流量调节器管路系统自激振荡及稳定性
收稿日期: 2023-08-09
修回日期: 2023-09-19
录用日期: 2023-12-04
网络出版日期: 2023-12-13
基金资助
液体火箭发动机技术重点实验室基金(6142704210102)
Self⁃excited oscillation and stability of flow regulator pipeline system
Received date: 2023-08-09
Revised date: 2023-09-19
Accepted date: 2023-12-04
Online published: 2023-12-13
Supported by
Foundation of Key Laboratory of Science and Technology on Liquid Rocket Engine(6142704210102)
流量调节器管路系统是液氧煤油发动机中的重要模块,通过探究该系统的稳定性特征,为减小参数振荡的改进措施提供方向。通过非线性与小偏差线性方法,揭示自激振荡机制,获得系统分岔特性和稳定边界。研究发现:平衡点不稳定是自激振荡的形成条件,系统从线性项为主导的78.81 Hz发散振荡,逐步发展为非线性主导的70.01 Hz等幅振荡。随着压差增大,系统发生了Hopf超临界分岔,稳定区域随之缩小;随着节流面积增大,系统出现了Hopf亚临界分岔,稳定区域随之扩大。减小管长与增大管径均减弱了不稳定的幅值条件,皆有利于系统稳定。调节器阻尼孔对稳定边界影响不大,减小该孔径可明显减小自激振荡幅值。调节器矩形槽高度增大可使稳定区域增大,在高度为4.5、2.5 mm时分别出现了复杂的稳定边界分支、分岔曲线拐点。流量边界下的系统稳定性取决于静态负载曲线的差率,当工作在负差率区,系统不稳定,且流量边界下系统稳定域比压力边界更大。
董蒙 , 邢理想 , 徐浩海 . 流量调节器管路系统自激振荡及稳定性[J]. 航空学报, 2024 , 45(11) : 529427 -529427 . DOI: 10.7527/S1000-6893.2023.29427
The flow regulator pipeline system is an important module in LOX/kerosene engine. Through exploring the stability characteristics of the system, the direction for improving measures to reduce the amplitude of parameter oscillations is presented. Using nonlinear and small deviation linear methods, we reveal the mechanism of self-excited oscillation and obtain the bifurcation characteristics and stable boundaries of the system. Results show that the instability of the equilibrium point is a condition for the formation of self-excited oscillation, and the system gradually develops from a linear dominated divergent oscillation of 78.81 Hz to a nonlinear dominated constant amplitude oscillation of 70.01 Hz. As the pressure difference increases, the system undergoes Hopf supercritical bifurcation, and the stable region decreases accordingly. As the throttling area increases, the system exhibits Hopf subcritical bifurcation, and the stable region increases accordingly. Reducing the pipe length and increasing the pipe diameter both weaken the unstable amplitude conditions, which are beneficial for system stability. The damping hole of the regulator has little effect on the stable boundary, and reducing this aperture can significantly decrease the amplitude of self-excited oscillation. An increase in the height of the rectangular groove of the regulator can increase the stability region, resulting in complex stable boundary branches and bifurcation curve inflection points at heights of 4.5 mm and 2.5 mm, respectively. The stability of the system under the flow boundary depends on the difference of the static load curve. When working in the negative difference region, the system is unstable, and the stability region of the system at the flow boundary is larger than that at the pressure boundary.
1 | JUNG T. Static characteristics of a bellows-type flow regulator for the thrust control of a liquid rocket engine[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228(11): 2036-2045. |
2 | SUTTON G P, BIBLARZ O. Rocket Propulsion Elements: 9th edition[M]. Hoboken, New Jersey: John Wiley & Sons, Inc, 2016 |
3 | 董蒙, 谭永华, 邢理想, 等. 液体火箭发动机系统振荡及稳定性研究进展[J]. 航空动力学报, 2023, 38(12): 2919-2936. |
DONG M, TAN Y H, XING L X, et al. Research progress on system oscillation and stability of liquid rocket engine[J]. Journal of Aerospace Power, 2023, 38(12): 2919-2936 (in Chinese). | |
4 | JUNG T. Static characteristics of a flow regulator for a liquid rocket engine[J]. Journal of Spacecraft and Rockets, 2011, 48(3): 541-544. |
5 | 王昕. 流量调节器动态特性研究[J]. 火箭推进, 2004, 30(3): 19-24. |
WANG X. Study on dynamic characteristics of flow regulator[J]. Journal of Rocket Propulsion, 2004, 30(3): 19-24 (in Chinese). | |
6 | 冯岳鹏. 氢氧补燃发动机变推力调节方案与调节过程研究[D]. 北京: 中国运载火箭技术研究院, 2021. |
FENG Y P. Research on variable thrust regulating scheme and process of staged combustion cycle LOX/LH2 engine[D]. Beijing: China Academy of Launch Vehicle Technology, 2021 (in Chinese). | |
7 | 管杰, 何宏疆, 董万峰, 等. 流量调节器快速起调过程[J]. 火箭推进, 2022, 48(5): 61-68. |
GUAN J, HE H J, DONG W F, et al. Rapid start-up process of liquid-flow regulator[J]. Journal of Rocket Propulsion, 2022, 48(5): 61-68 (in Chinese). | |
8 | 孙晓峰, 董旭, 张光宇, 等. 特征值理论在稳定性预测中的应用研究进展[J]. 航空学报, 2022, 43(10): 527408. |
SUN X F, DONG X, ZHANG G Y, et al. Progress review of application of eigenvalue theory to stability prediction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527408 (in Chinese). | |
9 | LIU C H, JIANG H Z. A seventh-order model for dynamic response of an electro-hydraulic servo valve[J]. Chinese Journal of Aeronautics, 2014, 27(6): 1605-1611. |
10 | YIN Y B, WANG D, LI W D, et al. Effect of the resonance suppression damping on the stability of a cartridge pilot-operated relief valve[J]. Journal of Fluids and Structures, 2023, 121: 103948. |
11 | FUNK J E. Poppet valve stability[J]. Journal of Basic Engineering, 1964, 86(2): 207-212. |
12 | 王剑中, 陈二锋, 余武江, 等. 气动阀门自激振动机理及动态稳定性[J]. 航空动力学报, 2014, 29(6): 1490-1497. |
WANG J Z, CHEN E F, YU W J, et al. Mechanism of self-excited vibration and dynamic stability for pneumatic valves[J]. Journal of Aerospace Power, 2014, 29(6): 1490-1497 (in Chinese). | |
13 | 刘上, 刘红军, 陈建华, 等. 流量调节器在泵压式供应系统中的动力学特性[J]. 火箭推进, 2014, 40(2): 28-35. |
LIU S, LIU H J, CHEN J H, et al. Dynamical characteristics of flow regulator in pump feed system[J]. Journal of Rocket Propulsion, 2014, 40(2): 28-35 (in Chinese). | |
14 | 刘上, 刘红军, 徐浩海, 等. 流量调节器-管路系统频率特性及稳定性[J]. 推进技术, 2012, 33(4): 631-638. |
LIU S, LIU H J, XU H H, et al. Frequency characteristics and stability of the flow regulator-pipe system[J]. Journal of Propulsion Technology, 2012, 33(4): 631-638 (in Chinese). | |
15 | 舍维科夫. 液体火箭发动机自动控制理论[M].张兴波,刘站国, 译. 西安: 中国航天科技集团公司第六研究院第十一研究所, 2002. |
SHEVIKOV. Automatic control theory of Liquid-propellant rocket [M]. ZHANG Xingbo, LIU Zhanguo, translated. Xi’an: The Eleventh Research Institute of the Sixth Research Institute of China Aerospace Science and Technology Corporation, 2002. | |
16 | MISRA A S. Acoustic,Fluid-Structure and decoupled seismic analysis of piping systems[D]. Toronto: University of Toronto, 2003. |
17 | KADAR F, HOS C, STEPAN G. Delayed oscillator model of pressure relief valves with outlet piping[J]. Journal of Sound Vibration, 2022, 534: 117016. |
18 | BOUZIDI S EL, HASSAN M, ZIADA S. Acoustic methods to suppress self-excited oscillations in spring-loaded valves[J]. Journal of Fluids and Structures, 2019, 85: 126-137. |
19 | SCHR?DERS S, FIDLIN A. Asymptotic analysis of self-excited and forced vibrations of a self-regulating pressure control valve[J]. Nonlinear Dynamics, 2021, 103(3): 2315-2327. |
20 | HAYASHI S, HAYASE T, KURAHASHI T. Chaos in a hydraulic control valve[J]. Journal of Fluids and Structures, 1997, 11(6): 693-716. |
21 | HAYASHI S. Instability of poppet valve circuit[J]. JSME International Journal Ser C, Dynamics, Control, Robotics, Design and Manufacturing, 1995, 38(3): 357-366. |
22 | 陈二锋, 丁建春, 武园浩, 等. 气动阀门颤振的局部稳定与全局稳定特性[J]. 航空动力学报, 2018, 33(3): 663-670. |
CHEN E F, DING J C, WU Y H, et al. Local and global stability of pneumatic valves’ chatter[J]. Journal of Aerospace Power, 2018, 33(3): 663-670 (in Chinese). | |
23 | 叶奇昉, 严诗杰, 陈江平, 等. 气动先导式电磁阀的自激振动[J]. 机械工程学报, 2010, 46(1): 115-121. |
YE Q F, YAN S J, CHEN J P, et al. Self-excited vibration in a pneumatic pilot-operated solenoid valve[J]. Journal of Mechanical Engineering, 2010, 46(1): 115-121 (in Chinese). | |
24 | 陈一丹, 陈宏玉. 液氧煤油发动机单向阀自激振荡特性[J]. 火箭推进, 2021, 47(5): 35-41. |
CHEN Y D, CHEN H Y. Self-excited oscillation characteristics of check valve of LOX/kerosene engine[J]. Journal of Rocket Propulsion, 2021, 47(5): 35-41 (in Chinese). | |
25 | 张淼, 徐浩海, 李斌, 等. 流量调节器管路系统自激振荡特性研究[J]. 推进技术, 2021, 42(7): 1493-1500. |
ZHANG M, XU H H, LI B, et al. Auto oscillation of flow regulator pipe system[J]. Journal of Propulsion Technology, 2021, 42(7): 1493-1500 (in Chinese). |
/
〈 |
|
〉 |