航空发动机高性能制造专栏

金属激光增材+X复合制造技术综述

  • 李毅 ,
  • 王振忠 ,
  • 肖宇航 ,
  • 张鹏飞
展开
  • 厦门大学 航空航天学院,厦门 361005

收稿日期: 2023-07-20

  修回日期: 2023-08-14

  录用日期: 2023-11-12

  网络出版日期: 2023-12-13

基金资助

中国航发自主创新专项资金(ZZCX-2018-017)

Review of laser⁃metal additive manufacturing + X hybrid technology

  • Yi LI ,
  • Zhenzhong WANG ,
  • Yuhang XIAO ,
  • Pengfei ZHANG
Expand
  • School of Aerospace Engineering,Xiamen University,Xiamen 361005,China

Received date: 2023-07-20

  Revised date: 2023-08-14

  Accepted date: 2023-11-12

  Online published: 2023-12-13

Supported by

Independent Innovation Foundation of AECC(ZZCX-2018-017)

摘要

激光增材制造技术(LAM)为航空航天复杂金属零件提供了极高的设计自由度和制造灵活性,但目前主流LAM技术存在监测与控制难度大、热应力变形与缺陷难处理等关键问题。“增材+X”复合制造技术提供了多尺度解决方案,结合各辅助制造工艺的优点以改善增材成形材料的精度与性能。增材+机械场/磁场/声场/热场等能场可实现调控熔池流动、改善微观组织、控制晶粒尺寸方向、释放残余应力以及改善表面质量等有益效果的协同优化。简要回顾了LAM技术特点及其在航空航天业的典型应用,总结了增减材、增等材制造技术的主要工艺与技术内涵,重点评述了非接触式的磁、声、热辅助场对增材熔池动力学、微观组织发展、表面质量、热梯度的作用机理以及模拟仿真研究。最后总结了各能量场辅助增材制造技术的优势与局限性,展望了金属激光“增材+X”复合制造技术的发展趋势。

本文引用格式

李毅 , 王振忠 , 肖宇航 , 张鹏飞 . 金属激光增材+X复合制造技术综述[J]. 航空学报, 2024 , 45(13) : 629349 -629349 . DOI: 10.7527/S1000-6893.2023.29349

Abstract

Laser Additive Manufacturing (LAM) provides a high degree of design freedom and manufacturing flexibility for the preparation of complex metal parts in aerospace engineering, but current mainstream LAM technologies have key problems such as difficulty in monitoring and control, thermal stress deformation, and defects management. while additive manufacturing + X hybrid technology provide multi-scale solutions, and by combining the advantages of various auxiliary manufacturing processes, the accuracy and performance of AM forming materials are improved. AM + mechanical/magnetic/acoustic/thermal field enable achieve synergistic optimization of beneficial effects such as controlling melt pool flow, improving microstructure, management grain size orientation, releasing residual stress, and improving surface quality. The development of mainstream LAM technology and the current application status in the aerospace industry are reviewed, the action mechanism of additive-subtractive and additive-equivalent hybrid manufacturing technologies on LAM are summarized, and the mechanism and simulation research of non-contact magnetic, acoustic, and thermal auxiliary fields on melt pool dynamics, microstructure development, surface quality development, thermal gradient are emphatically commented. In conclusion, the strengths and limitations of various field auxiliary additive manufacturing technologies are summarized, and the future trends of laser-metal additive manufacturing + X hybrid technology are anticipated.

参考文献

1 RAABE D, TASAN C C, OLIVETTI E A. Strategies for improving the sustainability of structural metals[J]. Nature2019575: 64-74.
2 顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光202047(5): 0500002.
  GU D D, ZHANG H M, CHEN H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers202047(5): 0500002 (in Chinese).
3 郭东明. 高性能精密制造[J]. 中国机械工程201829(7): 757-765.
  GUO D M. High-performance precision manufacturing[J]. China Mechanical Engineering201829(7): 757-765 (in Chinese).
4 LI Z H, XU R J, ZHANG Z W, et al. The influence of scan length on fabricating thin-walled components in selective laser melting[J]. International Journal of Machine Tools and Manufacture2018126: 1-12.
5 GU D D, SHI X Y, POPRAWE R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science2021372(6545): eabg1487.
6 WEBSTER S, LIN H, CARTER F M, et al. Physical mechanisms in hybrid additive manufacturing: A process design framework[J]. Journal of Materials Processing Technology2021291: 117048.
7 BLAKEY-MILNER B, GRADL P, SNEDDEN G, et al. Metal additive manufacturing in aerospace: A review[J]. Materials & Design2021209: 110008.
8 SUN C, WANG Y, MCMURTREY M D, et al. Additive manufacturing for energy: A review[J]. Applied Energy2021282: 116041.
9 BUSACHI A, ERKOYUNCU J, COLEGROVE P, et al. A review of additive manufacturing technology and cost estimation techniques for the defence sector[J]. CIRP Journal of Manufacturing Science and Technology201719: 117-128.
10 MURPHY S V, ATALA A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology201432(8): 773-785.
11 SCHWAB A, LEVATO R, D’ESTE M, et al. Printability and shape fidelity of bioinks in 3D bioprinting[J]. Chemical Reviews2020120(19): 11028-11055.
12 GRADL P, TINKER D C, PARK A, et al. Robust metal additive manufacturing process selection and development for aerospace components[J]. Journal of Materials Engineering and Performance202231(8): 6013-6044.
13 GU D D, MEINERS W, WISSENBACH K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms[J]. International Materials Reviews201257(3): 133-164.
14 PARK S H, SON S J, LEE S B, et al. Surface machining effect on material behavior of additive manufactured SUS 316L[J]. Journal of Materials Research and Technology202113: 38-47.
15 LI L, HAGHIGHI A, YANG Y R. A novel 6-axis hybrid additive-subtractive manufacturing process: Design and case studies[J]. Journal of Manufacturing Processes201833: 150-160.
16 BIDARE P, BITHARAS I, WARD R M, et al. Fluid and particle dynamics in laser powder bed fusion[J]. Acta Materialia2018142: 107-120.
17 DEBROY T, MUKHERJEE T, WEI H L, et al. Metallurgy, mechanistic models and machine learning in metal printing[J]. Nature Reviews Materials20216(1): 48-68.
18 COLOMO A G, WOOD D, MARTINA F, et al. A comparison framework to support the selection of the best additive manufacturing process for specific aerospace applications[J]. International Journal of Rapid Manufacturing20209(2/3): 194.
19 SAMES W J, LIST F A, PANNALA S, et al. The metallurgy and processing science of metal additive manufacturing[J]. International Materials Reviews201661(5): 315-360.
20 MADHAVADAS V, SRIVASTAVA D, CHADHA U, et al. A review on metal additive manufacturing for intricately shaped aerospace components[J]. CIRP Journal of Manufacturing Science and Technology202239: 18-36.
21 LIU S Y, SHIN Y C. Additive manufacturing of Ti6Al4V alloy: A review[J]. Materials & Design2019164: 107552.
22 KWOK C T, MAN H C, CHENG F T, et al. Developments in laser-based surface engineering processes: With particular reference to protection against cavitation erosion[J]. Surface and Coatings Technology2016291: 189-204.
23 PERINI M, BOSETTI P, BALC N. Additive manufacturing for repairing: From damage identification and modeling to DLD[J]. Rapid Prototyping Journal202026(5): 929-940.
24 ZHENG Y F, LIU J K, AHMAD R. A cost-driven process planning method for hybrid additive-subtractive remanufacturing[J]. Journal of Manufacturing Systems202055: 248-263.
25 AZIZ N A, ADNAN N A A, WAHAB D A, et al. Component design optimisation based on artificial intelligence in support of additive manufacturing repair and restoration: Current status and future outlook for remanufacturing[J]. Journal of Cleaner Production2021296: 126401.
26 GUO P, ZOU B, HUANG C Z, et al. Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition[J]. Journal of Materials Processing Technology2017240: 12-22.
27 REHMAN A UR, PITIR F, SALAMCI M U. Laser powder bed fusion (LPBF) of In718 and the impact of pre-heating at 500 and 1 000 ℃: Operando study[J]. Materials202114(21): 6683.
28 BERETTA S, ROMANO S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes[J]. International Journal of Fatigue201794: 178-191.
29 MACHINES G A. X Line 2000R [EB/OL]. (2023-07-20)[2023-07-21].
30 SYED W U H, PINKERTON A J, LI L. A comparative study of wire feeding and powder feeding in direct diode laser deposition for rapid prototyping[J]. Applied Surface Science2005247(1-4): 268-276.
31 ABUABIAH M, MBODJ N G, SHAQOUR B, et al. Advancements in laser wire-feed metal additive manufacturing: A brief review[J]. Materials202316(5): 2030.
32 LIU Q, WANG Y, ZHENG H, et al. Wire feeding based laser additive manufacturing TC17 titanium alloy[J]. Materials Technology201631(2): 108-114.
33 VAFADAR A, GUZZOMI F, RASSAU A, et al. Advances in metal additive manufacturing: A review of common processes, industrial applications, and current challenges[J]. Applied Sciences202111(3): 1213.
34 WILSON J M, PIYA C, SHIN Y C, et al. Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis[J]. Journal of Cleaner Production201480: 170-178.
35 KANISHKA K, ACHERJEE B. A systematic review of additive manufacturing-based remanufacturing techniques for component repair and restoration[J]. Journal of Manufacturing Processes202389: 220-283.
36 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报201435(10): 2690-2698.
  WANG H M. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica201435(10): 2690-2698 (in Chinese).
37 王华明, 张述泉, 王韬, 等. 激光增材制造高性能大型钛合金构件凝固晶粒形态及显微组织控制研究进展[J]. 西华大学学报(自然科学版)201837(4): 9-14.
  WANG H M, ZHANG S Q, WANG T, et al. Progress on solidification grain morphology and microstructure control of laser additively manufactured large titanium components[J]. Journal of Xihua University (Natural Science Edition)201837(4): 9-14 (in Chinese).
38 NASA T. NASA advances new alloys and scale of metal additive manufacturing [EB/OL]. (2021-02-10)[2023-07-20].
39 GRADL P. Principles of directed energy deposition for aerospace applications [Z]. 2021. https:∥ntrs.nasa.gov/api/citations/20210000449/downloads/UTEP-Course%20-%20Principles%20of%20DED_Gradl_Jan2021.pdf
40 KERSTENS F, CERVONE A, GRADL P. End to end process evaluation for additively manufactured liquid rocket engine thrust chambers[J]. Acta Astronautica2021182: 454-465.
41 DONATH S. 3D printing a rocket engine [EB/OL]. (2019-11-27)[2023-07-20].
42 PEACH M. Pratt & Whitney uses 3D printing for aero engine parts[EB/OL]. (2015-04-08)[2023-07-20].
43 李涤尘, 鲁中良, 田小永, 等. 增材制造: 面向航空航天制造的变革性技术[J]. 航空学报202243(4): 525387.
  LI D C, LU Z L, TIAN X Y, et al. Additive manufacturing—Revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica202243(4): 525387 (in Chinese).
44 TAN C L, LI R S, SU J L, et al. Review on field assisted metal additive manufacturing[J]. International Journal of Machine Tools and Manufacture2023189: 104032.
45 HU Y B. Recent progress in field-assisted additive manufacturing: Materials, methodologies, and applications[J]. Materials Horizons20218(3): 885-911.
46 PRAGANA J P M, SAMPAIO R F V, BRAGAN?A I M F, et al. Hybrid metal additive manufacturing: A state-of-the-art review[J]. Advances in Industrial and Manufacturing Engineering20212: 100032.
47 LAUWERS B, KLOCKE F, KLINK A, et al. Hybrid processes in manufacturing[J]. CIRP Annals201463(2): 561-583.
48 SEALY M P, MADIREDDY G, WILLIAMS R E, et al. Hybrid processes in additive manufacturing[J]. Journal of Manufacturing Science and Engineering2018140(6): 060801.
49 熊晓晨, 秦训鹏, 华林, 等. 复合式增材制造技术研究现状及发展[J]. 中国机械工程202233(17): 2087-2097.
  XIONG X C, QIN X P, HUA L, et al. Research status and development of hybrid additive manufacturing technology[J]. China Mechanical Engineering202233(17): 2087-2097 (in Chinese).
50 KORKMAZ M E, WAQAR S, GARCIA-COLLADO A, et al. A technical overview of metallic parts in hybrid additive manufacturing industry[J]. Journal of Materials Research and Technology202218: 384-395.
51 AHMED OBEIDI M, Uí MHURCHADHA S M, RAGHAVENDRA R, et al. Comparison of the porosity and mechanical performance of 316L stainless steel manufactured on different laser powder bed fusion metal additive manufacturing machines[J]. Journal of Materials Research and Technology202113: 2361-2374.
52 SOSHI M, RING J, YOUNG C, et al. Innovative grid molding and cooling using an additive and subtractive hybrid CNC machine tool[J]. CIRP Annals201766(1): 401-404.
53 FLYNN J M, SHOKRANI A, NEWMAN S T, et al. Hybrid additive and subtractive machine tools-Research and industrial developments[J]. International Journal of Machine Tools and Manufacture2016101: 79-101.
54 FU Y H, ZHANG H O, WANG G L, et al. Investigation of mechanical properties for hybrid deposition and micro-rolling of bainite steel[J]. Journal of Materials Processing Technology2017250: 220-227.
55 MA J K, ZHANG Y S, LI J J, et al. Microstructure and mechanical properties of forging-additive hybrid manufactured Ti-6Al-4V alloys[J]. Materials Science and Engineering: A2021811: 140984.
56 FANG X W, ZHANG L J, CHEN G P, et al. Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering[J]. Materials Science and Engineering: A2021800: 140168.
57 KALENTICS N, DE SEIJAS M O V, GRIFFITHS S, et al. 3D laser shock peening–A new method for improving fatigue properties of selective laser melted parts[J]. Additive Manufacturing202033: 101112.
58 GOU J, WANG Z J, HU S S, et al. Effects of ultrasonic peening treatment in three directions on grain refinement and anisotropy of cold metal transfer additive manufactured Ti-6Al-4V thin wall structure[J]. Journal of Manufacturing Processes202054: 148-157.
59 HACKEL L, RANKIN J R, RUBENCHIK A, et al. Laser peening: A tool for additive manufacturing post-processing[J]. Additive Manufacturing201824: 67-75
60 李欣欣, 李兴, 王翼猛, 等. 激光精密加工, 点亮智能制造[J]. 中国激光202249(19): 1902001.
  LI X X, LI X, WANG Y M, et al. Laser precision processing lightens intelligent manufacturing[J]. Chinese Journal of Lasers202249(19): 1902001 (in Chinese).
61 LI Y H, ZHANG Z, GUAN Y C. Thermodynamics analysis and rapid solidification of laser polished Inconel 718 by selective laser melting[J]. Applied Surface Science2020511: 145423.
62 LI Y H, CHENG X, GUAN Y C. Ultrafine microstructure development in laser polishing of selective laser melted Ti alloy[J]. Journal of Materials Science & Technology202183: 1-6.
63 DU D F, DONG A P, SHU D, et al. Influence of static magnetic field on the microstructure of nickel-based superalloy by laser-directed energy deposition[J]. Metallurgical and Materials Transactions A202051(7): 3354-3359.
64 JI F L, QIN X P, HU Z Q, et al. Influence of ultrasonic vibration on molten pool behavior and deposition layer forming morphology for wire and arc additive manufacturing[J]. International Communications in Heat and Mass Transfer2022130: 105789.
65 SMITH W L, ROEHLING J D, STRANTZA M, et al. Residual stress analysis of surface layer heating effects on laser powder bed fusion of 316L stainless steel[J]. Additive Manufacturing202147: 102252.
66 WEI H L, MUKHERJEE T, ZHANG W, et al. Mechanistic models for additive manufacturing of metallic components[J]. Progress in Materials Science2021116: 100703
67 CHEN L W, LI H, LIU S, et al. Simulation of surface deformation control during selective laser melting of AlSi10Mg Powder using an external magnetic field[J]. AIP Advances20199(4): 045012.
68 DU Y, MUKHERJEE T, FINCH N, et al. High-throughput screening of surface roughness during additive manufacturing[J]. Journal of Manufacturing Processes202281: 65-77.
69 DU Y, MUKHERJEE T, DEBROY T. Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects[J]. Applied Materials Today202124: 101123.
70 KAO A, GAN T, TONRY C, et al. Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences2020378(2171): 20190249.
71 YANG Z C, WANG S H, ZHU L D, et al. Manipulating molten pool dynamics during metal 3D printing by ultrasound[J]. Applied Physics Reviews20229(2): 021416.
72 PROMOPPATUM P. Dual-laser powder bed fusion additive manufacturing: computational study of the effect of process strategies on thermal and residual stress formations[J]. The International Journal of Advanced Manufacturing Technology2022121(1): 1337-1351.
73 ZHANG W Y, ABBOTT W M, SASNAUSKAS A, et al. Process parameters optimisation for mitigating residual stress in dual-laser beam powder bed fusion additive manufacturing[J]. Metals202212(3): 420.
74 HOFMEISTER W, GRIFFITH M. Solidification in direct metal deposition by LENS processing[J]. Journal of the Minerals Metals & Materials Society200153(9): 30-34.
75 LI P F, GONG Y D, WEN X L, et al. Surface residual stresses in additive/subtractive manufacturing and electrochemical corrosion[J]. The International Journal of Advanced Manufacturing Technology201898(1): 687-697.
76 DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components-Process, structure and properties[J]. Progress in Materials Science201892: 112-224.
77 WEBSTER S, EHMANN K, CAO J. Energy density comparison via highspeed, imaging of directed energy deposition[J]. Procedia Manufacturing202048: 691-696.
78 NIE J W, CHEN C Y, SHUAI S S, et al. Effect of static magnetic field on the evolution of residual stress and microstructure of laser remelted inconel 718 superalloy[J]. Journal of Thermal Spray Technology202029(6): 1410-1423.
79 DU D F, HALEY J C, DONG A P, et al. Influence of static magnetic field on microstructure and mechanical behavior of selective laser melted AlSi10Mg alloy[J]. Materials & Design2019181: 107923.
80 LU Y, SUN G F, WANG Z D, et al. Effects of electromagnetic field on the laser direct metal deposition of austenitic stainless steel[J]. Optics Laser Technology2019119: 105586.
81 ZHAO X S, WANG Y X, SONG H, et al. Effect of auxiliary longitudinal magnetic field on overlapping deposition of wire arc additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology2023125(3): 1383-1401.
82 FAN X Q, FLEMING T G, REES D T, et al. Thermoelectric magnetohydrodynamic control of melt pool flow during laser directed energy deposition additive manufacturing[J]. Additive Manufacturing202371: 103587.
83 NAKSUK N, POOLPERM P, NAKNGOENTHONG J, et al. Experimental investigation of hot-wire laser deposition for the additive manufacturing of titanium parts[J]. Materials Research Express20229(5): 056515.
84 DALAEE M, CHEAITANI F, ARABI-HASHEMI A, et al. Feasibility study in combined direct metal deposition (DMD) and plasma transfer arc welding (PTA) additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology2020106(9): 4375-4389.
85 NOWOTNY S, BRUECKNER F, THIEME S, et al. High-performance laser cladding with combined energy sources[J]. Journal of Laser Applications201527(S1): S17001.
86 XIONG Z G, ZHANG P P, TAN C L, et al. Selective laser melting and remelting of pure tungsten[J]. Advanced Engineering Materials202022(3): 1901352.
87 KOBRYN P A, SEMIATIN S L. Microstructure and texture evolution during solidification processing of Ti-6Al-4V[J]. Journal of Materials Processing Technology2003135(2-3): 330-339.
88 MARTIN J H, YAHATA B D, HUNDLEY J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature2017549: 365-369.
89 KANG N, CODDET P, WANG J, et al. A novel approach to produce functionally graded silicon matrix composite materials by selective laser melting[J]. Composite Structures2017172: 251-258.
90 WANG H, HU Y B, NING F D, et al. Ultrasonic vibration-assisted laser engineered net shaping of Inconel 718 parts: Effects of ultrasonic frequency on microstructural and mechanical properties[J]. Journal of Materials Processing Technology2020276: 116395.
91 LI Z X, LIU C M, XU T Q, et al. Reducing arc heat input and obtaining equiaxed grains by hot-wire method during arc additive manufacturing titanium alloy[J]. Materials Science and Engineering: A2019742: 287-294.
92 CHEN X H, CHEN B, CHENG X, et al. Microstructure and properties of hybrid additive manufacturing 316L component by directed energy deposition and laser remelting[J]. Journal of Iron and Steel Research International202027(7): 842-848.
93 DU D F, WANG L, DONG A P, et al. Promoting the densification and grain refinement with assistance of static magnetic field in laser powder bed fusion[J]. International Journal of Machine Tools and Manufacture2022183: 103965.
94 ZHOU H X, SONG C H, YANG Y Q, et al. The microstructure and properties evolution of SS316L fabricated by magnetic field-assisted laser powder bed fusion[J]. Materials Science and Engineering: A2022845: 143216.
95 GUAN R G, TIE D. A review on grain refinement of aluminum alloys: Progresses, challenges and prospects[J]. Acta Metallurgica Sinica (English Letters)201730(5): 409-432.
96 KIRKA M M, LEE Y, GREELEY D A, et al. Strategy for texture management in metals additive manufacturing[J]. JOM201769(3): 523-531.
97 WANG Y C, SHI J. Texture control of Inconel 718 superalloy in laser additive manufacturing by an external magnetic field[J]. Journal of Materials Science201954(13): 9809-9823.
98 SCHIRRA J J, CALESS R H, HATALA R W. The effect of laves phase on the mechanical properties of wrought and cast + HIP Inconel 718 [J]. Superalloys1991718(625): 375-388.
99 TODARO C J, EASTON M A, QIU D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound[J]. Nature Communications202011(1): 142.
100 ZHANG C, GAO M, ZENG X Y. Workpiece vibration augmented wire arc additive manufacturing of high strength aluminum alloy[J]. Journal of Materials Processing Technology2019271: 85-92.
101 XU J J, LIN X, GUO P F, et al. The effect of preheating on microstructure and mechanical properties of laser solid forming IN-738LC alloy[J]. Materials Science and Engineering: A2017691: 71-80.
102 MüLLER A V, SCHLICK G, NEU R, et al. Additive manufacturing of pure tungsten by means of selective laser beam melting with substrate preheating temperatures up to 1 000 ℃[J]. Nuclear Materials and Energy201919: 184-188
103 MERTENS R, DADBAKHSH S, VAN HUMBEECK J, et al. Application of base plate preheating during selective laser melting[J]. Procedia CIRP201874: 5-11.
104 SANG Y X, XIAO M Z, ZHANG Z J, et al. Effect of auxiliary heating process on low power pulsed laser wire feeding deposition[J]. Materials & Design2022218: 110666.
105 FAN W, TAN H, LIN X, et al. Microstructure formation of Ti-6Al-4?V in synchronous induction assisted laser deposition[J]. Materials & Design2018160: 1096-1105.
106 HEELING T, WEGENER K. The effect of multi-beam strategies on selective laser melting of stainless steel 316L[J]. Additive Manufacturing201822: 334-342.
107 ZHAO Y Z, SUN J, GUO K, et al. Investigation on the effect of laser remelting for laser cladding nickel based alloy[J]. Journal of Laser Applications201931(2): 022512.
108 LIU B, LI B Q, LI Z H. Selective laser remelting of an additive layer manufacturing process on AlSi10Mg[J]. Results in Physics201912: 982-988.
109 BI G J, GASSER A, WISSENBACH K, et al. Characterization of the process control for the direct laser metallic powder deposition[J]. Surface and Coatings Technology2006201(6): 2676-2683.
110 LU H F, WU L J, WEI H L, et al. Microstructural evolution and tensile property enhancement of remanufactured Ti6Al4V using hybrid manufacturing of laser directed energy deposition with laser shock peening[J]. Additive Manufacturing202255: 102877.
111 LU J Z, LU H F, XU X, et al. High-performance integrated additive manufacturing with laser shock peening–induced microstructural evolution and improvement in mechanical properties of Ti6Al4V alloy components[J]. International Journal of Machine Tools and Manufacture2020148: 103475.
112 LIOU F, SLATTERY K, KINSELLA M, et al. Applications of a hybrid manufacturing process for fabrication of metallic structures[J]. Rapid Prototyping Journal200713(4): 236-244.
113 AL-MILAJI K N, GUPTA S, PECHARSKY V K, et al. Differential effect of magnetic alignment on additive manufacturing of magnetocaloric particles[J]. AIP Advances202010(1): 015052.
114 DASS A, MORIDI A. State of the art in directed energy deposition: From additive manufacturing to materials design[J]. Coatings20199(7): 418.
115 WU D J, LIU D H, NIU F Y, et al. Al–Cu alloy fabricated by novel laser-tungsten inert gas hybrid additive manufacturing[J]. Additive Manufacturing202032: 100954.
116 XIAO Z X, CHEN C P, HU Z H, et al. Effect of rescanning cycles on the characteristics of selective laser melting of Ti6Al4V[J]. Optics & Laser Technology2020122: 105890.
117 SEIDEL A, FINASKE T, STRAUBEL A, et al. Additive manufacturing of powdery Ni-based superalloys mar-M-247 and CM 247 LC in hybrid laser metal deposition[J]. Metallurgical and Materials Transactions A201849(9): 3812-3830.
118 ROEHLING J D, SMITH W L, ROEHLING T T, et al. Reducing residual stress by selective large-area diode surface heating during laser powder bed fusion additive manufacturing[J]. Additive Manufacturing201928: 228-235.
119 WU D J, YU C S, WANG Q Y, et al. Synchronous-hammer-forging-assisted laser directed energy deposition additive manufacturing of high-performance 316L samples[J]. Journal of Materials Processing Technology2022307: 117695.
120 HUAN P C, WEI X, WANG X N, et al. Comparative study on the microstructure, mechanical properties and fracture mechanism of wire arc additive manufactured Inconel 718 alloy under the assistance of alternating magnetic field[J]. Materials Science and Engineering: A2022854: 143845.
121 COLEGROVE P A, DONOGHUE J, MARTINA F, et al. Application of bulk deformation methods for microstructural and material property improvement and residual stress and distortion control in additively manufactured components[J]. Scripta Materialia2017135: 111-118.
文章导航

/