综述

支板/凹腔燃烧室混合与燃烧性能研究进展

  • 赵子健 ,
  • 刘朝阳 ,
  • 黄伟
展开
  • 国防科技大学 空天科学学院 高超声速技术实验室,长沙 410073
.E-mail: gladrain2001@163.com

收稿日期: 2023-10-25

  修回日期: 2023-11-01

  录用日期: 2023-12-04

  网络出版日期: 2023-12-07

基金资助

国家自然科学基金(12002373);湖南省自然科学基金(2021JJ40656);国防科技大学科研计划(ZK21-42)

Research progress on mixing and combustion performance of strut/cavity-based combustor

  • Zijian ZHAO ,
  • Chaoyang LIU ,
  • Wei HUANG
Expand
  • Hypersonic Technology Laboratory,College of Aerospace Engineering,National University of Defense Technology,Changsha 410073,China

Received date: 2023-10-25

  Revised date: 2023-11-01

  Accepted date: 2023-12-04

  Online published: 2023-12-07

Supported by

National Natural Science Foundation of China(12002373);Hunan Provincial Natural Science Foundation(2021JJ40656);National University of Defense Technology Scientific Research Program(ZK21-42)

摘要

在高超声速飞行条件下,燃料在超燃冲压发动机燃烧室内的驻留时间非常短,燃料与氧化剂的充分混合、点火和维持稳定的燃烧是高超声速推进的关键。为了提高燃烧室中燃料的混合与燃烧性能,国内外研究人员将诸如支板、斜坡、凹腔、后向台阶等增混稳燃装置引入燃烧室,取得了一定成果。在以往的研究中,支板和凹腔在流场中形成的回流区能达到较好增混稳燃效果,受到了广泛的关注与拓展。本文综述了近年来支板、凹腔及支板-凹腔组合构型的国内外研究进展,并对相关研究的未来发展方向作出了展望。

本文引用格式

赵子健 , 刘朝阳 , 黄伟 . 支板/凹腔燃烧室混合与燃烧性能研究进展[J]. 航空学报, 2024 , 45(16) : 29765 -029765 . DOI: 10.7527/S1000-6893.2023.29765

Abstract

Under hypersonic flight conditions, the residence time of fuel in the scramjet combustor is extremely short, while sufficient mixing, ignition, and stable combustion of fuel and oxidants are important issues for hypersonic propulsion. To improve the mixing and combustion performance of fuel in the combustion chamber, domestic and foreign researchers have introduced mixing and combustion stabilization devices such as struts, ramps, cavities, and backward steps into the combustor, and have obtained certain achievements. In previous studies, the recirculating zone formed by the strut and cavity in the flow field can achieve good mixing and combustion stabilization performance, receiving widespread attention and expansion. This paper reviews the recent research progress on strut, cavity, and strut-cavity combination configurations around the world, and explores the future development direction of related research.

参考文献

1 王振国, 梁剑寒, 丁猛, 等. 高超声速飞行器动力系统研究进展[J]. 力学进展200939(6): 716-739.
  WANG Z G, LIANG J H, DING M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics200939(6): 716-739 (in Chinese).
2 黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报201031(5): 1259-1265.
  HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics201031(5): 1259-1265 (in Chinese).
3 ABDULRAHMAN G A Q, QASEM N A A, IMTEYAZ B, et al. A review of aircraft subsonic and supersonic combustors[J]. Aerospace Science and Technology2023132: 108067.
4 SUSHEEL K, KRISHNA M P, KAUSHAL K S. Recent developments in technological innovations in scramjet engines: A review[J]. Materials Today: Proceedings202145(P7): 6874-6881.
5 SAM L, IDITHSAJ P T, NAIR P P, et al. Prospects for scramjet engines in reusable launch applications: A review[J]. International Journal of Hydrogen Energy202348(92): 36094-36111.
6 陈兴良, 景婷婷, 朱韶华, 等. 支板/凹腔组合稳焰器耦合机制研究[J]. 推进技术202243(11): 198-207.
  CHEN X L, JING T T, ZHU S H, et al. Coupling mechanism of strut/cavity combined flame stabilizer[J]. Journal of Propulsion Technology202243(11): 198-207 (in Chinese).
7 黄志伟. 超声速来流下的动态燃烧机理研究[D]. 西安: 西北工业大学, 2018.
  HUANG Z W. Investigation on the mechanisms of combustion dynamics under supersonic inflow conditions[D]. Xi’an: Northwestern Polytechnical University, 2018. (in Chinese).
8 HUANG W, DU Z B, YAN L, et al. Supersonic mixing in airbreathing propulsion systems for hypersonic flights[J]. Progress in Aerospace Sciences2019109: 100545.
9 周燕梅, 吴继平, 黄伟. 超声速气流中的典型混合增强方法[J]. 航空兵器202330(2): 108-119.
  ZHOU Y M, WU J P, HUANG W. Typical mixing enhancement approaches in supersonic crossflow[J]. Aero Weaponry202330(2): 108-119 (in Chinese).
10 BORDOLOI N, SHARMA D, SARKEN K, et al. A review on the flame holding mechanisms used for the development of scramjet engines[J]. Materials Today: Proceedings202145: 7023-7030.
11 SUNEETHA L, RANDIVE P, PANDEY K M. Advances in flame stabilization process on a dual mode scramjet-A review[J]. Materials Today: Proceedings201918: 104-108.
12 GUERRA R, WAIDMANN W, LAIBLE C. An experimental investigation of the combustion of a hydrogen jet injected parallel in a supersonic air stream: AIAA-1991-5102[R]. Reston: AIAA, 1991.
13 刘昊, 张蒙正, 豆飞龙. 超燃冲压发动机支板研究综述[J]. 火箭推进201642(5): 74-81.
  LIU H, ZHANG M Z, DOU F L. Research on strut of scramjet engine[J]. Journal of Rocket Propulsion201642(5): 74-81 (in Chinese).
14 CHANG J T, ZHANG J L, BAO W, et al. Research progress on strut-equipped supersonic combustors for scramjet application[J]. Progress in Aerospace Sciences2018103: 1-30.
15 张军龙, 常军涛, 王瑄, 等. 基于支板稳燃的超声速火焰特性研究进展[J]. 空气动力学学报202038(3): 577-592.
  ZHANG J L, CHANG J T, WANG X, et al. Recent research progress on flame characteristics in strut-equipped scramjet combustor[J]. Acta Aerodynamica Sinica202038(3): 577-592 (in Chinese).
16 LI X, PAN Y, LIU C Y, et al. Investigation on the effect of the expansion angle in the strut-based supersonic combustor[J]. Aerospace Science and Technology2023133: 108095.
17 PINTO R S, SREE RENGANATHAN T, ANSARI S M D H, et al. Effects of stagnation temperature on hysteresis in flame stabilization in a hydrogen-fueled strut-stabilized supersonic combustor[J]. International Journal of Hydrogen Energy202348(84): 32982-32994.
18 YUAN M C, WANG P, ZHANG Y, et al. Large eddy simulation of flame and thermal-acoustic characteristics in a strut-based scramjet with dynamic thickened flame model[J]. Case Studies in Thermal Engineering202341: 102560.
19 SINGH A, MUKHOPADHYAY S. Effect of strut profile, angled injection, and blunting of leading edge on mixing of supersonic hydrogen-air streams[J]. International Journal of Hydrogen Energy202348(3): 1175-1188.
20 ZHANG L, SHENG Z Q, DAN Y, et al. Scramjet combustion with bumpy struts[J]. Aerospace Science and Technology2023140: 108462.
21 ZHANG J C, WANG Z G, LIU C Y, et al. Computational realization of turbulent combustion in a scramjet combustor stabilized by a lobed strut[J]. International Journal of Hydrogen Energy202348(10): 4073-4086.
22 GERLINGER P, STOLL P, KINDLER M, et al. Numerical investigation of mixing and combustion enhancement in supersonic combustors by strut induced streamwise vorticity[J]. Aerospace Science and Technology200812(2): 159-168.
23 张宇杰. 支板发动机引射模态混合增强特性研究[D]. 长沙: 国防科技大学, 2012.
  ZHANG Y J. Investigation of the mixing enhancement in ejector mode of strut-jet engine[D].Changsha: National University of Defense Technology, 2012 (in Chinese).
24 PRANAYKUMAR S, MENGU D, PRAKASH A. Effect of crossflow impinging type throttling mechanism on combustion characteristics of a strut-based scramjet combustor[J]. Aerospace Science and Technology2023142: 108648.
25 黄伟, 杜兆波. 超声速流动中燃料混合增强方法研究进展[J]. 航空兵器202027(4): 1-10.
  HUANG W, DU Z B. Progress in research on mixing enhancement approaches in supersonic crossflow[J]. Aero Weaponry202027(4): 1-10 (in Chinese).
26 LI L Y, RONG C J, HU S Y, et al. Intelligent variable strut for combustion performance optimization of a wide-range scramjet engine[J]. International Journal of Hydrogen Energy202449: 1-13.
27 NAIR P P, NARAYANAN V, SURYAN A. Combustion efficiency improvement for scramjet combustor with strut based flame stabilizer using passive techniques[J]. International Journal of Hydrogen Energy202146(80): 40054-40072.
28 NAIR P P, SURYAN A, NARAYANAN V. Modal analysis of mixing characteristics in scramjet combustor with passive struts[J]. International Journal of Hydrogen Energy202247(81): 34656-34675.
29 CHOUBEY G, PANDEY K M. Effect of variation of angle of attack on the performance of two-strut scramjet combustor[J]. International Journal of Hydrogen Energy201641(26): 11455-11470.
30 CHOUBEY G, PANDEY K M. Effect of different strut+wall injection techniques on the performance of two-strut scramjet combustor[J]. International Journal of Hydrogen Energy201742(18): 13259-13275.
31 CHOUBEY G, SOLANKI M, PATEL O, et al. Effect of different strut design on the mixing performance of H2 fueled two-strut based scramjet combustor[J]. Fuel2023351: 128972.
32 PU C, GUO G M, HAN J L, et al. Effect of jet schemes of the double-nozzle strut injector on mixing efficiency of air and hydrogen for a scramjet combustor[J]. International Journal of Hydrogen Energy202247(53): 22633-22649.
33 PU C, GUO G M, HAN J L, et al. Influence of flow control schemes of the three-strut injector on the mixing efficiency and total pressure loss for a scramjet combustor[J]. International Journal of Hydrogen Energy202348(94): 36972-36986.
34 QIU H C, ZHANG J L, GAO J, et al. Research on combustion performance optimization in scramjet combustor with strut/wall combined fuel injection scheme[J]. Aerospace Science and Technology2021109: 106376.
35 TIAN H M, ZHANG J L, QIU H C, et al. Research on influence of oxygen on flow/combustion characteristics in a scramjet combustor equipped with an O2-pilot strut[J]. Acta Astronautica2023212: 541-555.
36 QUAN F X, CHANG J T, KONG C, et al. Research on mixing characteristics of scramjet combustor equipped with strut injector[J]. Applied Thermal Engineering2024236: 121527.
37 李宁, 李旭昌, 张涵, 等. 超声速燃烧火焰稳定技术及其发展综述[J]. 飞航导弹2014(5): 60-67.
  LI N, LI X C, ZHANG H, et al. Summary of supersonic combustion flame stabilization technology and its development[J]. Aerodynamic Missile Journal2014(5): 60-67 (in Chinese).
38 MECKLEM S A, LANDSBERG W O, CURRAN D, et al. Combustion enhancement via tandem cavities within a Mach 8 scramjet combustor[J]. Aerospace Science and Technology2022124: 107551.
39 BAURLE R A. Hybrid reynolds-averaged/large-eddy simulation of a scramjet cavity flameholder[J]. AIAA Journal201755(2): 544-560.
40 WANG H B, WANG Z G, SUN M B, et al. Combustion modes of hydrogen jet combustion in a cavity-based supersonic combustor[J]. International Journal of Hydrogen Energy201338(27): 12078-12089.
41 CAI Z, WANG T Y, SUN M B. Review of cavity ignition in supersonic flows[J]. Acta Astronautica2019165: 268-286.
42 CHOUBEY G, DEVARAJAN Y, HUANG W, et al. Recent advances in cavity-based scramjet engine- A brief review[J]. International Journal of Hydrogen Energy201944(26): 13895-13909.
43 HAMMACK S D, OMBRELLO T M. Spatio-temporal evolution of cavity ignition in supersonic flow[J]. Proceedings of the Combustion Institute202138(3): 3845-3852.
44 MICKA D J, DRISCOLL J F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder[J]. Proceedings of the Combustion Institute200932(2): 2397-2404.
45 EUGêNIO RIBEIRO F H, BOUKHARFANE R, MURA A. Highly-resolved large-eddy simulations of combustion stabilization in a scramjet engine model with cavity flameholder[J]. Computers & Fluids2020197: 104344.
46 FUREBY C, NILSSON T. Large eddy simulation of cavity stabilized ramjet combustion[J]. Aerospace Science and Technology2023141: 108503.
47 CAO D G, BROD H E, YOKEV N, et al. Vortex dynamics in different combustion regions of a cavity-based scramjet[J]. Proceedings of the Combustion Institute202339(3): 3147-3156.
48 KANNAIYAN K. Computational study of the effect of cavity geometry on the supersonic mixing and combustion of ethylene[J]. Journal of Computational Science202047: 101243.
49 MA G W, SUN M B, LI F, et al. Effect of fuel injection distance and cavity depth on the mixing and combustion characteristics of a scramjet combustor with a rear-wall-expansion cavity[J]. Acta Astronautica2021182: 432-445.
50 ZHAO G Y, SUN M B, SONG X L, et al. Experimental investigations of cavity parameters leading to combustion oscillation in a supersonic crossflow[J]. Acta Astronautica2019155: 255-263.
51 RUAN J L, DOMINGO P, RIBERT G. Analysis of combustion modes in a cavity based scramjet[J]. Combustion and Flame2020215: 238-251.
52 MAHTO N K, CHOUBEY G, SUNEETHA L, et al. Effect of variation of length-to-depth ratio and Mach number on the performance of a typical double cavity scramjet combustor[J]. Acta Astronautica2016128: 540-550.
53 ZHANG Y X, WANG Z G, SUN M B, et al. Hydrogen jet combustion in a scramjet combustor with the rearwall-expansion cavity[J]. Acta Astronautica2018144: 181-192.
54 LANDSBERG W O, CURRAN D, VEERARAGAVAN A. Experimental flameholding performance of a scramjet cavity with an inclined front wall[J]. Aerospace Science and Technology2022126: 107622.
55 DHANKARGHARE A A, JAYACHANDRAN T, MURUGANANDAM T M. Comparative investigation of strut cavity and wall cavity in supersonic flows[J]. Aerospace Science and Technology2022124: 107520.
56 DHANKARGHARE A A, JAYACHANDRAN T, MURUGANANDAM T M. A numerical investigation of flow dynamics inside wall cavity and strut cavity placed in supersonic airflows[J]. Physics of Fluids202335(1), 016102.
57 LI Z X, MANH T D, BARZEGAR GERDROODBARY M, et al. Computational investigation of multi-cavity fuel injection on hydrogen mixing at supersonic combustion chamber[J]. International Journal of Hydrogen Energy202045(15): 9077-9087.
58 PANDEY K M, CHOUBEY G, AHMED F, et al. Effect of variation of hydrogen injection pressure and inlet air temperature on the flow-field of a typical double cavity scramjet combustor[J]. International Journal of Hydrogen Energy201742(32): 20824-20834.
59 CHOUBEY G, PANDEY K M. Effect of variation of inlet boundary conditions on the combustion flow-field of a typical double cavity scramjet combustor[J]. International Journal of Hydrogen Energy201843(16): 8139-8151.
60 QIN F, CHEN X L, ZHU S H, et al. Experimental study on ignition and blowout characteristics of dual combined flame stabilizers in scramjet[J]. Aerospace Science and Technology2023142: 108634.
61 CAI Z, SUN M B, WANG H B, et al. Experimental investigation on ignition schemes of partially covered cavities in a supersonic flow[J]. Acta Astronautica2016121: 88-94.
62 DAN Y, SHENG Z Q, ZHANG L, et al. Effects of lifted fuel injection using an upstream ramp of a cavity on scramjet combustion[J]. Aerospace Science and Technology2023142: 108651.
63 SHI L, TIAN Z Y, DAI C W, et al. Rocket-augmented flame stabilization and combustion in a cavity-based scramjet[J]. Aerospace Science and Technology2023139: 108375.
64 LIU M J, SUN M B, YANG D N, et al. Mixing and combustion characteristics in a scramjet combustor with different distances between cavity and backward-facing step[J]. Chinese Journal of Aeronautics202336(7): 400-411.
65 WANG H B, WANG Z G, SUN M B, et al. Combustion characteristics in a supersonic combustor with hydrogen injection upstream of cavity flameholder[J]. Proceedings of the Combustion Institute201334(2): 2073-2082.
66 JIANG Y, POOZESH A, MARASHI S M, et al. Effect of cavity back height on mixing efficiency of hydrogen multi-jets at supersonic combustion chamber[J]. International Journal of Hydrogen Energy202045(51): 27828-27836.
67 SITARAMAN H, YELLAPANTULA S, HENRY DE FRAHAN M T, et al. Adaptive mesh based combustion simulations of direct fuel injection effects in a supersonic cavity flame-holder[J]. Combustion and Flame2021232: 111531.
68 GAO L, YU X, PENG J B, et al. Flame characteristics of a cavity-based scramjet combustor using OH-PLIF and feature extraction[J]. International Journal of Hydrogen Energy202247(47): 20662-20675.
69 CHOUBEY G, SOLANKI M, BHATT T, et al. Numerical investigation on a typical scramjet combustor using cavity floor H2 fuel injection strategy[J]. Acta Astronautica2023202: 373-385.
70 CAO D G, BROD H E, YOKEV N, et al. Flame stabilization and local combustion modes in a cavity-based scramjet using different fuel injection schemes[J]. Combustion and Flame2021233: 111562.
71 ZHU Z X, HUANG Y K, ZHANG H W, et al. Combustion performance in a cavity-based combustor under subatmospheric pressure[J]. Fuel2021302: 121115.
72 MORALES A J, SMERINA D M, THORNTON M R, et al. Mean pressure gradient effects on the performance of ramjet cavity stabilized flames[J]. Aerospace Science and Technology2023141: 108533.
73 YUAN M C, WANG P, ZHANG Y, et al. Assessing the effect of air-throttling on ignition dynamics in a hydrogen-fueled scramjet under various fuel-injection strategies using LES[J]. Acta Astronautica2023212: 111-122.
74 CAI Z, ZHU J J, SUN M B, et al. Ignition processes and modes excited by laser-induced plasma in a cavity-based supersonic combustor[J]. Applied Energy2018228: 1777-1782.
75 LI J, TANG J F, ZHANG H R, et al. Dual-frequency excited plasma enhanced ignition in a supersonic combustion chamber[J]. Aerospace Science and Technology2022129: 107849.
76 OMBRELLO T M, CARTER C D, TAM C J, et al. Cavity ignition in supersonic flow by spark discharge and pulse detonation[J]. Proceedings of the Combustion Institute201535(2): 2101-2108.
77 MIAO H F, ZHANG Z B, HE Y Y, et al. Ignition enhancement of liquid kerosene by a novel high-energy spark igniter in scramjet combustor at Mach 4 flight condition[J]. Aerospace Science and Technology2023139: 108397.
78 FENG R, HUANG Y H, ZHU J J, et al. Ignition and combustion enhancement in a cavity-based supersonic combustor by a multi-channel gliding arc plasma[J]. Experimental Thermal and Fluid Science2021120: 110248.
79 FENG R, SUN M B, WANG H B, et al. Experimental investigation of flameholding in a cavity-based scramjet combustor by a multi-channel gliding arc[J]. Aerospace Science and Technology2022121: 107381.
80 TIAN Y F, ZHU J J, SUN M B, et al. Enhancement of blowout limit in a Mach 2.92 cavity-based scramjet combustor by a gliding arc discharge[J]. Proceedings of the Combustion Institute202339(4): 5697-5705.
81 LUO T G, ZHU J J, SUN M B, et al. MCGA-assisted ignition process and flame propagation of a scramjet at Mach 2.0[J]. Chinese Journal of Aeronautics202336(7): 378-387.
82 JIA D P, YANG J, LIU C Y, et al. Dynamic response characteristics of flame during condition transition in a cavity-based scramjet combustor[J]. Acta Astronautica2023211: 200-207.
83 DAI J, YAN Y D. Effect of non-uniform incoming flow on the mixing enhancement in a scramjet cavity combustor[J]. International Journal of Hydrogen Energy202450: 758-771.
84 LIU X, LI P B, LI F, et al. Effect of kerosene injection states on mixing and combustion characteristics in a cavity-based supersonic combustor[J]. Chinese Journal of Aeronautics202437(4): 308-320.
85 YANG K, PAN Y, WANG Z G, et al. Experimental investigation of the ignition characteristics of vaporized RP-3 kerosene in supersonic flow[J]. Acta Astronautica2020174: 1-10.
86 YANG K, WANG N, PAN Y, et al. Effect of cavity arrangement on the ignition mode of vaporized kerosene in supersonic flow[J]. Aerospace Science and Technology2021113: 106691.
87 张新宇, 陈立红, 顾洪斌. 超燃冲压模型发动机中支板/凹腔一体化稳焰机构[C]∥2003全国流体力学青年研讨会论文集. 北京:中国空气动力学会,2003.
88 赵延辉. 基于凹腔—支板火焰稳定器的超声速燃烧室实验与数值模拟研究[D]. 长沙: 国防科技大学, 2011.
  ZHAO Y H. Numerical simulation and experimental research on scramjet combustor based on cavity-strut flameholder[D].Changsha: National University of Defense Technology, 2011. (in Chinese)
89 SUNEETHA L, RANDIVE P, PANDEY K M. Numerical investigation on mixing behavior of fuels inreacting and non-reacting flow condition of a cavity-strut based scramjet combustor[J]. International Journal of Hydrogen Energy201944(31): 16718-16734.
90 YU W B, YUE C, FAN Y X, et al. Influence of strut on trapped vortex cavity flameholder: Ignition and flame propagation performances[J]. Acta Astronautica2023204: 132-142.
91 刘特特. 支板-凹腔燃烧室内RP-3裂解产物超声速燃烧数值研究[D]. 大连: 大连理工大学, 2021.
  LIU T T. Numerical study on supersonic combustion of RP-3 pyrolysis products with strut and cavity combination[D]. Dalian: Dalian University of Technology, 2021 (in Chinese).
92 SUNEETHA L, RANDIVE P, PANDEY K M. Numerical investigation on implication of dual cavity on combustion characteristics in strut based scramjet combustor[J]. International Journal of Hydrogen Energy201944(60): 32080-32094.
93 SUNEETHA L, RANDIVE P, PANDEY K M. Numerical investigation on implication of strut profile on combustion characteristics in a cavity based scramjet combustor[J]. Acta Astronautica2020170: 623-636.
94 SUNEETHA L, RANDIVE P, PANDEY K M. Implication of diamond shaped dual strut on combustion characteristics in a cavity-based scramjet combustor[J]. International Journal of Hydrogen Energy202045(35): 17562-17574.
95 SUNEETHA L, RANDIVE P, PANDEY K M. Numerical investigation on implications of four strut injectors on combustion characteristics of a Doubly-Dual cavity-based scramjet combustor[J]. International Journal of Hydrogen Energy202045(56): 32128-32144.
96 LAKKA S, RANDIVE P, PANDEY K M. Implication of geometrical configuration of cavity on combustion performance in a strut-based scramjet combustor[J]. Acta Astronautica2021178: 793-804.
97 KIREETI S K, RAVIKIRAN S G, KUMAR G S. Numerical investigation on implication of innovative hydrogen strut in comparison with multi strut injector on performance and combustion characteristics in a scramjet combustor[J]. International Journal of Hydrogen Energy202247(99): 41932-41946.
98 KIREETI S K, RAVIKIRAN SASTRY G, GUGULOTHU S K, et al. Numerical investigations on the implication of hydrogen fuel jet injection pressure on the performance characteristics in a multi-strut in a double-dual cavity-based scramjet combustor[J]. Fuel2022324: 124528.
99 KIREETI S K, RAVI KIRAN SASTRY G, GUGULOTHU S K, et al. Comparison of combustion characteristics of four strut injectors with that of three strut injectors by numerically investigating doubly-dual cavity-based scramjet combustor[J]. Sustainable Energy Technologies and Assessments202253: 102759.
100 RAJESH A C, JEYAKUMAR S, JAYARAMAN K, et al. Steady and unsteady flow characteristics of dual cavity in strut injection scramjet combustor[J]. International Journal of Hydrogen Energy202348(72): 28174-28186.
101 RAJESH A C, JEYAKUMAR S, KANDASAMY J, et al. The implications of dual cavity location in a strut-mounted scramjet combustor[J]. International Communications in Heat and Mass Transfer2023145(PB): 106855.
102 YARASAI S S, RAVI D, YOGANAND S, et al. Numerical investigation on the performance and combustion characteristics of a cavity based scramjet combustor with novel strut injectors[J]. International Journal of Hydrogen Energy202348(14): 5681-5695.
103 MIAO J J, FAN Y X, WU W Q, et al. Effect of air-assistant on ignition and flame-holding characteristics in a cavity-strut based combustor[J]. Applied Energy2021283: 116307.
104 SUBHASIS C, PITAMBAR R. LES study on the effect of cavity configuration on combustion characteristics of a scramjet combustor with air-throttling[J]. International Journal of Hydrogen Energy202146(43): 22534-22553.
105 CHAKRAVARTHY S, RANDIVE P, PATI S. Implication of air-throttling on combustion characteristics of cavity-strut based scramjet combustor[J]. Acta Astronautica2021188: 171-184.
106 DU G M, TIAN Y, LE J L, et al. Experimental investigation of effects of air throttling on combustion characteristics in a kerosene-fueled scramjet at Ma7[J]. Acta Astronautica2023203: 447-453.
107 LIU Y S, XUE R, LIU J L, et al. Numerical study on the dynamic process of ramjet/scramjet mode transition in the integrated RBCC full flow path through multistage fuel injection strategies[J]. International Communications in Heat and Mass Transfer2023146: 106857.
文章导航

/