基于图模型的无人集群同步自定位与相对定位
收稿日期: 2023-10-12
修回日期: 2023-11-14
录用日期: 2023-12-01
网络出版日期: 2023-12-07
基金资助
国家自然科学基金(62203228);南京邮电大学引进人才自然科学研究启动基金(NY221137);航空科学基金(ASFC-2022Z0220X9001);武汉大学测绘遥感信息工程国家重点实验室开放研究基金(22P01);中国博士后科学基金(2023M742216)
Synchronized self⁃localization and relative⁃localization of unmanned swarms based on graph model
Received date: 2023-10-12
Revised date: 2023-11-14
Accepted date: 2023-12-01
Online published: 2023-12-07
Supported by
National Natural Science Foundation of China(62203228);Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(NY221137);Aeronautical Science Foundation of China(ASFC-2022Z0220X9001);Open Research Fund Program of LIESMARS, Wuhan University (22P01);China Postdoctoral Science Foundation(2023M742216)
协同定位是一种在导航基础设施受限环境下提高无人集群定位精度的技术,包含无人载体的自定位和相对定位2方面。其中,自定位用于获取自身绝对位姿,相对定位用于获取载体间的相对位姿。然而,现有协同定位方法通常解决其中一方面问题而忽视另一方面,这不仅限制了协同定位的工程应用价值,也忽视了集群运动与个体运动间约束关系,从而降低协同估计性能。为解决该问题,本文提出了一种可同时进行自定位和相对定位的协同估计方法。以概率约束关系构建概率图模型,用于描述自定位状态、相对定位状态和集群量测间的概率关系;利用高斯信息形式在图模型中进行定位状态边缘概率求解,实现图模型高效计算。实验结果表明,本方法不仅能够实现自定位和相对定位的同步估计,且估计精度优于传统协同定位方法,自定位误差与相对定位误差分别降低59.2%和30.3%,为集群协同导航定位提供了一种新的融合框架。
熊骏 , 解相朋 , 熊智 , 庄园 , 郑宇 . 基于图模型的无人集群同步自定位与相对定位[J]. 航空学报, 2023 , 44(S2) : 729708 -729708 . DOI: 10.7527/S1000-6893.2023.29708
Cooperative localization, including self-localization and relative-localization of unmanned carriers, is a technology that improves the localization accuracy of unmanned swarms in navigation infrastructure-limited environments. Self-localization is used to obtain the absolute pose of oneself, and relative-localization is used to obtain the relative pose between carriers. However, existing cooperative localization methods usually solve one aspect of the problem while ignoring the other, which not only limits the engineering application value of cooperative localization but also ignores the constraint relationship between swarm motion and individual motion; thereby, reducing cooperative estimation performance. To solve this problem, this paper proposes a Simultaneous Self and Relative Localization (SSRL) method that can parallelly perform self-localization and relative-localization of collaborative swarm. A probability graph model is constructed with probability constraint relationships to describe the probability relationship between self-localization states, relative localization states, and swarm measurements. Moreover, Gaussian information form is used to estimate the marginal probability of localization states in the graph model via an efficient approach. The experimental results show that SSRL can not only achieve simultaneous estimation of self-localization and relative-localization, but also has better estimation accuracy than traditional cooperative localization methods. The self-localization error and relative-localization error are reduced by 59.2% and 30.3%, respectively, indicating that SSRL provides a new fusion framework for swarm cooperative localization systems.
1 | OUYANG X F, ZENG F L, LV D Q, et al. Cooperative navigation of UAVs in GNSS-denied area with colored RSSI measurements[J]. IEEE Sensors Journal, 2021, 21(2): 2194-2210. |
2 | NOH Y, YAMAGUCHI H, LEE U. Infrastructure-free collaborative indoor positioning scheme for time-critical team operations[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(3): 418-432. |
3 | 徐博, 王权达, 李盛新, 等. 基于马氏距离结合自适应滤波的协同定位方法[J]. 中国惯性技术学报, 2021, 29(5): 617-624. |
XU B, WANG Q D, LI S X, et al. Cooperative location method based on Mahalanobis distance and adaptive filter[J]. Journal of Chinese Inertial Technology, 2021, 29(5): 617-624 (in Chinese). | |
4 | HUANG Y L, ZHANG Y G, XU B, et al. A new adaptive extended Kalman filter for cooperative localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 353-368. |
5 | 陈明星, 熊智, 刘建业, 等. 基于因子图的无人机集群分布式协同导航方法[J]. 中国惯性技术学报, 2020, 28(4): 456-461. |
CHEN M X, XIONG Z, LIU J Y, et al. Distributed cooperative navigation method of UAV swarm based on factor graph[J]. Journal of Chinese Inertial Technology, 2020, 28(4): 456-461 (in Chinese). | |
6 | WU X W, XIAO B, WU C H, et al. Factor graph based navigation and positioning for control system design: A review[J]. Chinese Journal of Aeronautics, 2022, 35(5): 25-39. |
7 | XU H Y, WANG C C, BO Y M, et al. An aerial and ground multi-agent cooperative location framework in GNSS-challenged environments[J]. Remote Sensing, 2022, 14(19): 5055. |
8 | WYMEERSCH H, LIEN J, WIN M Z. Cooperative localization in wireless networks[J]. Proceedings of the IEEE, 2009, 97(2): 427-450. |
9 | XIONG J, XIONG Z, DING Y M, et al. Multihypothesis Gaussian belief propagation for radio ranging-based localization and mapping[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-13. |
10 | RANGAN S, SCHNITER P, FLETCHER A K. Vector approximate message passing[C]∥ 2017 IEEE International Symposium on Information Theory (ISIT). Piscataway: IEEE Press, 2017: 1588-1592. |
11 | 王小刚. 非线性滤波方法在无人机相对导航上的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. |
WANG X G. Research on application of nonlinear filtering method in relative navigation of UAV[D].Harbin: Harbin Institute of Technology, 2010 (in Chinese). | |
12 | CHAKRABORTY A, SHARMA R, BRINK K. Cooperative localization for multi-rotor UAVs[C]∥ Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA,2019. |
13 | 熊骏, 熊智, 于永军, 等. 超宽带测距辅助的无人机近距离相对导航方法[J]. 中国惯性技术学报, 2018, 26(3): 346-351. |
XIONG J, XIONG Z, YU Y J, et al. Close relative navigation algorithm for unmanned aerial vehicle aided by UWB relative measurement[J]. Journal of Chinese Inertial Technology, 2018, 26(3): 346-351 (in Chinese). | |
14 | DE PONTE MüLLER F. Survey on ranging sensors and cooperative techniques for relative positioning of vehicles[J]. Sensors, 2017, 17(2): 271. |
15 | WU H, WU P F, SHI Z S, et al. An aerial ammunition ad hoc network collaborative localization algorithm based on relative ranging and velocity measurement in a highly-dynamic topographic structure[J]. Defence Technology, 2023, 25: 231-248. |
16 | XU H, WANG L Q, ZHANG Y C, et al. Decentralized visual-inertial-UWB fusion for relative state estimation of aerial swarm[C]∥ 2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 8776-8782. |
17 | SUDDERTH E B, IHLER A T, ISARD M, et al. Nonparametric belief propagation[J]. Communications of the ACM, 2010, 53(10): 95-103. |
18 | ORTIZ J, EVANS T, DAVISON A J. A visual introduction to gaussian belief propagation [DB/OL]. arXiv preprint: 2107.02308, 2021. |
19 | DAVISON A J, ORTIZ J. Future mapping 2: Gaussian belief propagation for spatial AI [DB/OL]. arXiv preprint:1910.14139, 2019. |
20 | LEUNG K Y, HALPERN Y, BARFOOT T D, et al. The UTIAS multi-robot cooperative localization and mapping dataset[J]. The International Journal of Robotics Research, 2011, 30(8): 969-974. |
21 | ALAM N, DEMPSTER A G. Cooperative positioning for vehicular networks: Facts and future[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4): 1708-1717. |
/
〈 |
|
〉 |