马赫数6飞行条件圆截面超燃冲压发动机流动燃烧特征分析
收稿日期: 2023-09-13
修回日期: 2023-10-23
录用日期: 2023-12-04
网络出版日期: 2023-12-07
基金资助
国家自然科学基金(11925207)
Flow and combustion characteristic analysis of circular⁃section scramjet under Mach number 6 flight condition
Received date: 2023-09-13
Revised date: 2023-10-23
Accepted date: 2023-12-04
Online published: 2023-12-07
Supported by
National Natural Science Foundation of China(11925207)
本文基于RANS方法对马赫数6飞行条件下的乙烯燃料圆截面超燃冲压发动机燃烧流场开展了数值研究,计算中采用了压力相关的火焰面/进度变量模型,得到的数值结果与试验吻合,并据此分析了0.18和0.06当量比工况的火焰结构和燃烧特征。计算表明,0.18当量比工况释热强度高,在流场中形成了热壅塞,并且预混燃烧和扩散燃烧共同主导了整体的释热。而0.06当量比工况流道中心仍是超声速状态,扩散火焰主导了整体的释热。2个工况中,射流背风区和轴对称凹腔都是重要的反应区,其中射流背风区释热强度高,而凹腔起到了增强混合和提高燃烧效率的重要作用。
关键词: 圆截面超燃冲压发动机; 火焰面/进度变量模型; 超声速燃烧; 轴对称凹腔
于江飞 , 汤涛 , 闫博 , 汪洪波 , 杨揖心 , 熊大鹏 , 孙明波 . 马赫数6飞行条件圆截面超燃冲压发动机流动燃烧特征分析[J]. 航空学报, 2024 , 45(14) : 129575 -129575 . DOI: 10.7527/S1000-6893.2023.29575
A numerical study on the combustion flow field of an ethylene-fueled circular-section scramjet engine under Mach number 6 flight condition is conducted based on the RANS method. A pressure-related flamelet/progress variable model is used in the calculations, and the numerical results obtained are in good agreement with the experiments. Accordingly, the flame structure and combustion characteristics were analyzed for the high and low equivalence ratio cases. Calculations show that the high equivalence ratio case has a high level of heat release, forming a thermal congestion in the flow field, and that the premixed combustion and diffusion combustion together dominate the overall heat release. In the low equivalence ratio case, the center of the flow channel is still supersonic, and the diffusion flame dominates the overall heat release. In both cases, the jet leeward zone and the axisymmetric cavity are important reaction zones, where the former has a high heat release intensity, while the latter plays an important role in enhancing mixing and improving combustion efficiency.
1 | WANG Z G, WANG H B, SUN M B. Review of cavity-stabilized combustion for scramjet applications[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(14): 2718-2735. |
2 | 王璐, 高亮杰, 钱战森, 等. 低马赫数下多凹腔燃烧室非稳态燃烧过程[J]. 航空学报, 2016, 37(S1): 112-118. |
WANG L, GAO L J, QIAN Z S, et al. Unsteady combustion process of multi-cavity combustion chamber at low Mach number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1): 112-118 (in Chinese). | |
3 | SUN M B, WANG H B, CAI Z, et al. Unsteady supersonic combustion[M]. Singapore:Springer, 2020. |
4 | HEPPENHEIMER T A. Facing the heat barrier: A history of hypersonics[R]. Washington, D.C.: NASA, 2007. |
5 | LUO S J, NI Z Y, LIU Y F. Study on the characteristics of interaction flowfields induced by supersonic jet on a revolution body[J]. Theoretical and Applied Mechanics Letters, 2017, 7(6): 362-365. |
6 | TIAN Y, LE J L, YANG S H, et al. Investigation of combustion characteristics in a kerosene-fueled supersonic combustor with air throttling[J]. AIAA Journal, 2020, 58(12): 5379-5388. |
7 | TIAN Y, YANG S H, LE J L, et al. Investigation of combustion process of a kerosene fueled combustor with air throttling[J]. Combustion and Flame, 2017, 179: 74-85. |
8 | CHANG J T, ZHANG J L, BAO W, et al. Research progress on strut-equipped supersonic combustors for scramjet application[J]. Progress in Aerospace Sciences, 2018, 103: 1-30. |
9 | 岳连捷, 张旭, 张启帆, 等. 高马赫数超燃冲压发动机技术研究进展[J]. 力学学报, 2022, 54(2): 263-288. |
YUE L J, ZHANG X, ZHANG Q F, et al. Research progress on high-mach-number scramjet engine technologies[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 263-288 (in Chinese). | |
10 | LIU Q L, BACCARELLA D, LEE T H. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences, 2020, 119: 100636. |
11 | WALTRUP P J, WHITE M E, ZARLINGO F, et al. History of U.S. navy ramjet, scramjet, and mixed-cycle propulsion development[J]. Journal of Propulsion and Power, 2002, 18(1): 14-27. |
12 | FOELSCHE R, LEYLEGIAN J, BETTI A, et al. Progress on the development of a freeflight atmospheric scramjet test technique: AIAA-2005-3297[R]. Reston: AIAA, 2005. |
13 | WALKER S, RODGERS F, PAULL A, et al. HyCAUSE flight test program: AIAA-2008-2580[R]. Reston: AIAA, 2008. |
14 | BISEK N J. High-fidelity simulations of the HIFiRE-6 flow path: AIAA-2016-1115[R]. Reston: AIAA, 2016. |
15 | CHAN W Y K, RAZZAQI S A, TURNER J C, et al. Freejet testing of the HIFiRE 7 scramjet flowpath at Mach 7.5[J]. Journal of Propulsion and Power, 2018, 34(4): 844-853. |
16 | VANYAI T, GRIEVE S, DENMAN Z, et al. Fundamental scramjet combustion experiments using hydrocarbon fuel: AIAA-2018-5201[R]. Reston: AIAA, 2018. |
17 | VANYAI T, LANDSBERG W O, MCINTYRE T J, et al. OH visualization of ethylene combustion modes in the exhaust of a fundamental, supersonic combustor[J]. Combustion and Flame, 2021, 226: 143-155. |
18 | LIU Q L, BACCARELLA D, LANDSBERG W, et al. Cavity flameholding in an optical axisymmetric scramjet in Mach 4.5 flows[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3733-3740. |
19 | LIU Q L, BACCARELLA D, LEE T H. Combustion stabilization in an axisymmetric scramjet in Mach 4.5 flows: AIAA-2019-1681[R]. Reston: AIAA, 2019. |
20 | LIU Q L, BACCARELLA D, MCGANN B, et al. Dual-mode operation and transition in axisymmetric scramjets[J]. AIAA Journal, 2019, 57(11): 4764-4777. |
21 | BACCARELLA D, LIU Q L, MCGANN B J, et al. Combustion induced choking and unstart initiation in a circular constant-area supersonic flow[J]. AIAA Journal, 2019, 57(12): 5365-5376. |
22 | BACCARELLA D, LIU Q, MCGANN B, et al. Isolator-combustor interactions in a circular model scramjet with thermal and non-thermal choking-induced unstart[J]. Journal of Fluid Mechanics, 2021, 917: A38. |
23 | LANDSBERG W O, GIBBONS N N, WHEATLEY V, et al. Flow field manipulation via fuel injectors in scramjets: AIAA-2017-2389[R]. Reston: AIAA, 2017. |
24 | LANDSBERG W O, GIBBONS N N, WHEATLEY V, et al. Improving scramjet performance through flow field manipulation[J]. Journal of Propulsion and Power, 2017, 34(3): 578-590. |
25 | LANDSBERG W O, WHEATLEY V, SMART M K, et al. Performance of high Mach number scramjets-Tunnel vs flight[J]. Acta Astronautica, 2018, 146: 103-110. |
26 | LANDSBERG W O, WHEATLEY V, SMART M K, et al. Enhanced supersonic combustion targeting combustor length reduction in a Mach 12 scramjet[J]. AIAA Journal, 2018, 56(10): 3802-3807. |
27 | DAMM K A, LANDSBERG W O, MECKLEM S, et al. Performance analysis and validation of an explicit local time-stepping algorithm for complex hypersonic flows[J]. Aerospace Science and Technology, 2020, 107: 106321. |
28 | PETERSON D M. Simulation of a round supersonic combustor using wall-modeled large eddy simulation and partially-stirred reactor models[J]. Proceedings of the Combustion Institute, 2023, 39(3): 3137-3145. |
29 | MECKLEM S A, LANDSBERG W O, CURRAN D, et al. Combustion enhancement via tandem cavities within a Mach 8 scramjet combustor[J]. Aerospace Science and Technology, 2022, 124: 107551. |
30 | 闫博. 基于PLIF测量技术的圆截面超声速燃烧室燃料掺混与火焰稳定机理研究[D]. 长沙:国防科技大学, 2023. |
YAN Bo. Investigations of the fuel mixing and flameholding mechanism in a circular supersonic combustor based on PLIF techniques[D]. Changsha: National University of Defense Technology, 2023 (in Chinese). | |
31 | 汤涛, 于江飞, 黄玉辉, 等. 圆截面超声速燃烧室乙烯燃料喷注火焰结构和模式分析[J]. 航空学报, 2024, 45(11): 528880. |
TANG T, YU J F, HUANG Y H, et al. Analysis of structure and regime of ethylene fuel injection flame in circular-section supersonic combustor[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11): 528880 (in Chinese). | |
32 | TANG T, WANG Z G, HUANG Y H, et al. Investigation of combustion structure and flame stabilization in an axisymmetric scramjet[J]. AIAA Journal, 2022, 61(2): 585-601. |
33 | TANG T, WANG H B, SUN M B, et al. Evaluation of flamelet/progress variable model for the applications in supersonic combustion using hybrid RANS/LES approach[J]. Aerospace Science and Technology, 2022, 126: 107633. |
34 | MA G W, SUN M B, ZHAO G Y, et al. Numerical investigation of an axisymmetric model scramjet assisted with cavity of different aft wall angles[J]. International Journal of Aerospace Engineering, 2021, 2021: 7525824. |
35 | TANG T, WANG Z G, LI H S, et al. A method for optimizing reaction progress variable and its application[J]. Aerospace Science and Technology, 2022, 130: 107888. |
36 | 马光伟, 孙明波, 赵国焱, 等. 不同壁温及差分格式下超燃冲压发动机的仿真[J]. 航空学报, 2021, 42(S1): 16-27. |
MA G W, SUN M B, ZHAO G Y, et al. Simulation of scramjet under different wall temperatures and difference schemes[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 16-27 (in Chinese). | |
37 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
38 | 曾宇, 汪洪波, 孙明波, 等. SST湍流模型改进研究综述[J]. 航空学报, 2023, 44(9): 027411. |
ZENG Y, WANG H B, SUN M B, et al. SST turbulence model improvements: Review[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 027411 (in Chinese). | |
39 | 杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报, 2015, 36(1): 261-273. |
YANG Y, YOU J P, SUN M B. Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 261-273 (in Chinese). | |
40 | LI L, WANG H B, ZHAO G Y, et al. Efficient WENOCU4 scheme with three different adaptive switches[J]. Journal of Zhejiang University: Science A, 2020, 21(9): 695-720. |
41 | PITSCH H. FlameMaster: A C++ computer program for 0D combustion and 1D laminar flame calculations[EB/OL].[2023-12-04]. . |
42 | Mechanical and Aerospace Engineering, University of California at San Diego. Chemical-Kinetic mechanisms for combustion applications[EB/OL]. California: San Diego Mechanism Web Page, 2016. (2016-12-14) [2023-12-07]. . |
43 | YAMASHITA H, SHIMADA M, TAKENO T. A numerical study on flame stability at the transition point of jet diffusion flames[J]. Symposium (International) on Combustion, 1996, 26(1): 27-34. |
/
〈 |
|
〉 |