电磁不连续和缺陷结构表面波散射特性
收稿日期: 2023-08-22
修回日期: 2023-10-06
录用日期: 2023-11-20
网络出版日期: 2023-12-07
基金资助
国家级项目
Surface wave scattering characteristics of electromagnetic discontinuity and defect structures
Received date: 2023-08-22
Revised date: 2023-10-06
Accepted date: 2023-11-20
Online published: 2023-12-07
Supported by
National Level Project
对于隐身飞行器设计,当镜面和腔体等主要散射源被抑制后,表面波在电磁不连续和缺陷结构处产生的回波散射和空间散射成为重要的散射源。为研究电磁不连续和缺陷结构的表面波散射行为,通过平板波导激励,建立起表面波传输模型。基于该表面波传输模型,从飞行器表面结构出发,建立了曲面及二面倾角、缝隙和台阶3类电磁不连续或缺陷结构,并开展仿真研究,获得了关键结构参数与回波散射强度和空间散射效率的定量关系。研究表明:凸面不连续结构的表面波在传输过程中不断向空间散射而衰减,当凸面半径超过10倍波导波长时,衰减系数接近0,凹面不连续结构的表面波在传输过程中不衰减;二面倾角结构的倾角在30°范围内时,能够有效抑制表面波的空间散射效率在10%以内,且回波散射较弱;缝隙和台阶的表面波散射与结构尺寸之间存在半波谐振关系,且回波散射和空间散射抑制难以兼顾。研究结果可为隐身飞行器外形结构的表面波散射抑制设计提供指导。
余龙舟 , 黄江涛 , 钟世东 , 陈宪 , 陈诚 . 电磁不连续和缺陷结构表面波散射特性[J]. 航空学报, 2024 , 45(12) : 329467 -329467 . DOI: 10.7527/S1000-6893.2023.29467
For stealth vehicle design, when the main scattering sources such as mirror and cavity are suppressed, the echo scattering and spatial scattering produced by surface waves at electromagnetic discontinuities and defective structures become important scattering sources. In order to study the surface wave scattering behaviors of electromagnetic discontinuities and defective structures, a surface wave propagation model is established by planar waveguide excitation. Based on the surface wave propagation model, three kinds of electromagnetic discontinuity or defective structures of aircraft, including curved surface, dihedral inclination angle, gap and step, and the quantitative relationship between key structural parameters and echo scattering intensity and space scattering efficiency is obtained by simulation research. The results show that the surface wave of the convex discontinuous structure scatters and attenuates continuously in the propagation process. When the radius of the convex surface exceeds 10 times the wavelength of the waveguide, the attenuation coefficient is close to 0, while the surface wave of the concave discontinuous structure does not attenuate in the propagation process. When the diplanar dip angle is within the range of 30°, the spatial scattering efficiency of surface wave can be effectively suppressed within 10%, and the echo scattering is weak. There is a half-wave resonance relationship between the surface wave scattering of slots and steps and the structure size, and it is difficult to give attention to both echo scattering and spatial scattering suppression. The research results can provide guidance for the design of surface wave scattering suppression of stealth aircraft.
1 | 桑建华, 周海, 陈颖闻. 隐身技术推动新一代飞行器发展[J]. 航空科学技术, 2012, 23( 3): 15- 18. |
SANG J H, ZHOU H, CHEN Y W. Development of new generation air vehicles driven by stealth technology[J]. Aeronautical Science & Technology, 2012, 23( 3): 15- 18 (in Chinese). | |
2 | 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013: 33- 39. |
SANG J H. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013: 33- 39 (in Chinese). | |
3 | 徐广通, 刘莉, 许萌, 等. 一种考虑电磁隐身的突防轨迹规划方法[J]. 战术导弹技术, 2017( 5): 57- 61, 67. |
XU G T, LIU L, XU M, et al. Penetration trajectory planning considering electromagnetic stealth[J]. Tactical Missile Technology, 2017( 5): 57- 61, 67 (in Chinese). | |
4 | 王略, 章仲安. 低RCS飞行器外形设计实践[J]. 航空学报, 1995, 16( 6): 692- 695. |
WANG L, ZHANG Z A. Contour design and practice for a low RCS vehicle[J]. Acta Aeronautica et Astronautica Sinica, 1995, 16( 6): 692- 695 (in Chinese). | |
5 | 夏露. 导弹外形气动与隐身一体化优化设计研究[D]. 西安: 西北工业大学, 2001: 104- 130. |
XIA L. Research on integrated optimization design of aerodynamic and stealth of missile shape[D]. Xi’an: Northwestern Polytechnical University, 2001: 104- 130 (in Chinese). | |
6 | 班国东, 刘朝辉, 叶圣天, 等. 新型涂覆型雷达吸波材料的研究进展[J]. 表面技术, 2016, 45( 6): 140- 146. |
BAN G D, LIU Z H, YE S T, et al. Research progress of new radar absorbing coating[J]. Surface Technology, 2016, 45( 6): 140- 146 (in Chinese). | |
7 | 刘战合, 姬金祖, 王菁, 等. 飞行器表面规律分布的电磁缺陷散射机理[J]. 系统工程与电子技术, 2017, 39( 11): 2428- 2433. |
LIU Z H, JI J Z, WANG J, et al. Scattering mechanism of electromagnetic discontinuities regularly distributed on aircraft[J]. Systems Engineering and Electronics, 2017, 39( 11): 2428- 2433 (in Chinese). | |
8 | 桑建华, 周海. 飞行器表面电磁缺陷及雷达吸波材料应用[J]. 航空材料学报, 2003, 23( 2): 51- 55. |
SANG J H, ZHOU H. The electromagnetic discontinuities of the aircraft surface and an application of the radar absorbing materials[J]. Journal of Aeronautical Materials, 2003, 23( 2): 51- 55 (in Chinese). | |
9 | 邹真林. 表面电磁缺陷结构的电磁散射与算法研究[D]. 成都: 电子科技大学, 2018: 17- 27. |
ZOU Z L. Study on electromagnetic scattering and algorithm of electromagnetic discontinuties[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 17- 27 (in Chinese). | |
10 | 刘战合, 王晓璐, 王菁, 等. 理想缺陷目标电磁散射特性提取新方法[J]. 航空工程进展, 2017, 8( 2): 236- 243. |
LIU Z H, WANG X L, WANG J, et al. Novel extraction approach of electromagnetic scattering for ideal discontinuities[J]. Advances in Aeronautical Science and Engineering, 2017, 8( 2): 236- 243 (in Chinese). | |
11 | 高旭, 杨硕, 柴建忠, 等. 基于矢量对消的缺陷类目标散射试验改进方法[J]. 北京航空航天大学学报, 2017, 43( 7): 1293- 1299. |
GAO X, YANG S, CHAI J Z, et al. Improved test method based on vector cancellation for scattering characteristic of discontinuous target[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43( 7): 1293- 1299 (in Chinese). | |
12 | 赵京城, 杨涛, 付鑫如, 等. 基于载体对消方法的缝隙小角域散射特性研究[J]. 北京航空航天大学学报, 2018, 44( 7): 1554- 1561. |
ZHAO J C, YANG T, FU X R, et al. Scattering characteristics of slit based on carrier cancellation method in small angular domain[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44( 7): 1554- 1561 (in Chinese). | |
13 | 饶鸿. 柔性材料电磁缺陷对表面波传输特性的影响研究[D]. 成都: 电子科技大学, 2020: 37- 45. |
RAO H. Research on the effect of electromagnetic defects in flexible materials on surface wave transmission characteristics[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 37- 45 (in Chinese). | |
14 | NAGASAKA T, KOBAYASHI K. Wiener-Hopf analysis of the plane wave diffraction by a thin material strip: The case of E polarization[C]∥ 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA). Piscataway: IEEE Press, 2015: 622- 625. |
15 | NAGASAKA T, KOBAYASHI K. Plane wave diffraction by a slit in a material screen[C]∥ 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC). Piscataway: IEEE Press, 2019: 1. |
16 | 王超. 雷达吸波材料表面波抑制测试技术研究[D]. 成都: 电子科技大学, 2017: 1- 12. |
WANG C. Research on surface wave suppression measurement technology of radar absorbing material[D]. Chengdu: University of Electronic Science and Technology of China, 2017: 1- 12 (in Chinese). | |
17 | CHEN H Y, ZHOU P H, CHEN L, et al. Study on the properties of surface waves in coated RAM layers and monostatic RCSR performances of the coated slab[J]. Progress In Electromagnetics Research M, 2010, 11: 123- 135. |
18 | CHEN H Y, DENG L J, ZHOU P H, et al. Improvement of surface electromagnetic waves attenuation with resistive loading[J]. Progress In Electromagnetics Research Letters, 2011, 26: 143- 152. |
19 | 顾茂章, 张克潜. 微波技术[M]. 北京: 清华大学出版社, 2008: 141- 151. |
GU M ZH, ZHANG K Q. Microwave technique[M]. Beijing: Tsinghua University Press, 2008: 141- 151 (in Chinese). | |
20 | 李承祖, 赵凤章. 电动力学教程[M]. 2版. 长沙: 国防科技大学出版社, 1997: 248- 288. |
LI C Z, ZHAO F Z. Course of electrodynamics[M]. 2nd ed. Changsha: National University of Defense Technology Press, 1997: 248- 288 (in Chinese). |
/
〈 |
|
〉 |