液体火箭发动机高频燃烧不稳定问题综述
收稿日期: 2023-08-16
修回日期: 2023-09-11
录用日期: 2023-11-20
网络出版日期: 2023-12-07
基金资助
液体火箭发动机技术重点实验室基金(614270419)
High frequency combustion instability in liquid rocket engines: Review
Received date: 2023-08-16
Revised date: 2023-09-11
Accepted date: 2023-11-20
Online published: 2023-12-07
Supported by
National Key Laboratory of Science and Technology on Liquid Rocket Engines Fund(614270419)
高频燃烧不稳定现象诱发的大幅值压力振荡严重威胁液体火箭发动机可靠性,为此,国内外开展了大量深入的研究工作。为了提高对此类问题及相关研究的整体认识,系统阐述了液体火箭发动机高频燃烧不稳定问题的主要特点、关键物理机制、研究思路等,重点梳理了国内外在液体推进剂燃烧子过程响应机理方面的研究工作,明确指出了燃烧速率控制过程对于此类问题分析的重要意义。在此基础上,详细总结了液滴蒸发和射流掺混作为速率控制过程的高频燃烧不稳定问题数值仿真研究进展,仔细归纳了线性和非线性理论解析分析方法面临的挑战,简要介绍了基于非线性动力系统的分析方法在揭示高频燃烧不稳定非线性行为以及稳定性裕度评估方面的重要潜力。最后,针对不同工程控制措施的内在联系、应用情况等进行了分析,特别强调了燃烧释热分布控制的重要性。
汪广旭 , 李斌 , 谭永华 , 高玉闪 . 液体火箭发动机高频燃烧不稳定问题综述[J]. 航空学报, 2024 , 45(11) : 529450 -529450 . DOI: 10.7527/S1000-6893.2023.29450
High-frequency combustion instability remains a key challenge in the development of high-performance liquid rocket engines. The physical processes involved have significant characteristics such as cross scale, nonlinearity, and multi-field coupling. Improving the overall understanding of such problems is helpful for systematic research work. This article briefly describes the main characteristics, key physical mechanisms, and research ideas of high-frequency combustion instability in liquid rocket engines, focusing on the research progress in sub-process response mechanisms both domestically and internationally in recent decades. It points out the important significance of studying response mechanisms for different engine combustion rate control processes, summarizes the progress made by different analysis methods, challenges faced, and subsequent development directions, providing reference for engineering management of such issues.
1 | SUTTON G P. History of liquid propellant rocket engines[M]. Reston: AIAA, 2006. |
2 | HUZEL D K, HUANG D H, ARBIT H. Modern engineering for design of liquid-propellant rocket engines[M]. Reston: AIAA, 1992. |
3 | 张贵田. 高压补燃液氧煤油发动机[M]. 北京: 国防工业出版社, 2005. |
ZHANG G T. High pressure staged combustion LOX/kerosene rocket engine [M]. Beijing: National Defense Industry Press, 2005 (in Chinese). | |
4 | 李斌, 陈晖, 马冬英, 等. 500 tf级液氧煤油高压补燃发动机研制进展[J]. 火箭推进, 2022, 48(2): 1-10. |
LI B, CHEN H, MA D Y, et al. Development of 500 tf class high pressure stage combustion LOX/kerosene rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(2): 1-10 (in Chinese). | |
5 | 孙纪国, 郑孟伟, 龚杰峰, 等. 220 tf补燃循环氢氧发动机研制进展[J]. 火箭推进, 2022, 48(2): 11-20. |
SUN J G, ZHENG M W, GONG J F, et al. Development of staged combustion cycle LH2/LOX engine with 220 tf thrust[J]. Journal of Rocket Propulsion, 2022, 48(2): 11-20 (in Chinese). | |
6 | HARRJE D T, REARDON F H. Liquid propellant rocket combustion instability [M]. Washington, D.C.: NASA, 1972. |
7 | YANG V, ANDERSON W E. Liquid rocket engine combustion instability[M]. Reston: AIAA, 1995. |
8 | CROCCO L, CHENG S I. Theory of combustion instability in liquid propellant rocket motors [M]. London: Butterworths Publications Ltd, 1956. |
9 | 庄逢辰. 液体火箭发动机喷雾燃烧的理论、模型及应用[M]. 长沙: 国防科技大学出版社, 1995. |
ZHUANG F C. Theory, model and application of spray combustion of liquid rocket engine[M]. Changsha: National University of Defense Technology Press, 1995 (in Chinese). | |
10 | DRANOVSKY M L, YANG V, CULICK F, et al. Combustion instabilities in liquid rocket engines: Testing and development practices in Russia[M]. Reston: AIAA, 2007. |
11 | NATANZON M S. Combustion instability[M]. Reston: AIAA, 2008. |
12 | CULICK F E. Unsteady motions in combustion chambers for propulsion systems: AGARDograph AG-AVT-039-2006 [R]. Brussels: NATO, 2006. |
13 | SIRIGNANO W A. Driving mechanisms for combustion instability[J]. Combustion Science and Technology, 2015, 187(1-2): 162-205. |
14 | 聂万胜, 丰松江. 液体火箭发动机燃烧动力学模型与数值计算[M]. 北京: 国防工业出版社, 2011: 70. |
NIE W S, FENG S J. Combustion dynamics model and numerical calculation of liquid rocket engine[M]. Beijing: National Defense Industry Press, 2011: 70 (in Chinese). | |
15 | 王振国. 液体火箭发动机燃烧过程建模与数值仿真[M]. 北京: 国防工业出版社, 2012. |
WANG Z G. Modeling and numerical simulations of internal combustion process of liquid rocket engines[M]. Beijing: National Defense Industry Press, 2012 (in Chinese). | |
16 | 杨立军, 富庆飞. 液体火箭发动机推力室设计[M]. 北京: 北京航空航天大学出版社, 2013. |
YANG L J, FU Q F. Design of thrust chamber of liquid rocket engine[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2013 (in Chinese). | |
17 | KOBAYASHI K, DAIMON Y, IIZUKA N, et al. Studies on combustion instability for liquid propellant rocket engines: AIAA-2011-6028 [R]. Reston: AIAA, 2011. |
18 | KOBAYASHI K, NUNOME Y, TOMITA T, et al. Stability index for injection-coupled instability in full-scale firing tests[J]. Journal of Propulsion and Power, 2017, 33(6): 1489-1503. |
19 | FLANDRO G, JACOB E. Finite amplitude nonlinear waves in liquid rocket combustion chambers: AIAA-2008 -1003 [R]. Reston: AIAA, 2008. |
20 | FLANDRO G, FISCHBACH S. Effects of parallel wave incidence on combustion instability driving mechanisms: AIAA-2007-5807 [R]. Reston: AIAA, 2007. |
21 | FISHER S C, DODD F E, JENSEN R J, et al. Scaling techniques for liquid rocket combustion stability testing [J]. Progress in Asronautics and Aeronautics, 1995, 169(1995): 545-564. |
22 | DEXTER C E, FISHER M F, HULKA J R, et al. Scaling techniques for design, development, and test in liquid rocket thrust chambers:Aspects of modeling [J]. Progress in Asronautics and Aeronautics, 2004, 200 (2004): 553-600. |
23 | SOHN C H, SEOL W S, SHIBANOV A A, et al. On the method for hot-fire modeling of high-frequency combustion instability in liquid rocket engines[J]. KSME International Journal, 2004, 18(6): 1010-1018. |
24 | SOHN C H, SEOL W S, SHIBANOV A A, et al. Combustion stability boundaries of the subscale rocket chamber with impinging jet injectors[J]. Journal of Propulsion and Power, 2007, 23(1): 131-139. |
25 | 张蒙正. 燃烧不稳定性模拟实验技术[M]. 西安: 西北工业大学出版社, 2017. |
ZHANG M Z. Simulation experiment technology of combustion instability[M]. Xi’an: Northwestern Polytechnical University Press, 2017 (in Chinese). | |
26 | 张蒙正, 张志涛, 李鳌, 等. 高频燃烧不稳定性单喷注器燃烧室模拟实验的研究[J]. 实验技术与管理, 2008, 25(3): 28-32. |
ZHANG M Z, ZHANG Z T, LI A, et al. Simulation test of high-frequency combustion instabilities of chamber with single injector[J]. Experimental Technology and Management, 2008, 25(3): 28-32 (in Chinese). | |
27 | 张育林, 刘昆, 程谋森. 液体火箭发动机动力学理论与应用[M]. 北京: 科学出版社, 2005. |
ZHANG Y L, LIU K, CHENG M S. Dynamic theory and application of liquid rocket engine[M]. Beijing: Science Press, 2005 (in Chinese). | |
28 | MCCORMACK P D. A driving mechanism for high frequency combustion instability in liquid fuel rocket engines[J]. The Journal of the Royal Aeronautical Society, 1964, 68(645): 633-637. |
29 | FENWICH J R, BUGLER G J. Oscillatory flame front flow rate amplification through propellant injection ballistics [C]∥ Third ICRPG Combustion Conference. Cape Kennedy: CPIA Publication, 1967. |
30 | YANG A L, YANG S R, XU Y F, et al. Periodic atomization characteristics of simplex swirl injector induced by klystron effect [J]. Chinese Journal of Aeronautics, 2018, 31(5): 1066-1074. |
31 | ANON. 4400Hz Vibration investigation final report. Rockwell International [R]. East Hartford: Pratt and Whitney Aircraft, 1971. |
32 | ANON. Summary report on an investigation of combustion instability for liquid oxygen and liquid and cold gas hydrogen propellants [R]. East Hartford: Pratt and Whitney Aircraft, 1964. |
33 | CONRAD E, PARISH H, WANHAINEN J P. Effect of propellant injection velocity on screech in 20, 000-pound hydrogen-oxygen rocket engine: NASA TN D-3373[R]. Washington, D.C.: NASA, 1966. |
34 | ARMBRUSTER W, HARDI J S, SUSLOV D, et al. Experimental investigation of self-excited combustion instabilities with injection coupling in a cryogenic rocket combustor[J]. Acta Astronautica, 2018, 151: 655-667. |
35 | BAZAROV V. Self-pulsations in coaxial injectors with central swirl liquid stage: AIAA-1995-2358 [R]. Reston: AIAA, 1995. |
36 | BAZAROV V G, YANG V. Liquid-propellant rocket engine injector dynamics[J]. Journal of Propulsion and Power, 1998, 14(5): 797-806. |
37 | STRASSER W. Towards the optimization of a pulsatile three-stream coaxial airblast injector[J]. International Journal of Multiphase Flow, 2011, 37(7): 831-844. |
38 | BAI X, CHENG P, SHENG L Y, et al. Effects of backpressure on self-pulsation characteristics of liquid-centered swirl coaxial injectors[J]. International Journal of Multiphase Flow, 2019, 116: 239-249. |
39 | BAI X, SHENG L Y, LI Q L, et al. Effects of annulus width and post thickness on self-pulsation characteristics for liquid-centered swirl coaxial injectors[J]. International Journal of Multiphase Flow, 2020, 122: 103140. |
40 | REN Y J, GUO K K, ZHAO J F, et al. Numerical investigation of spray self-pulsation characteristics of liquid-centered swirl coaxial injector with different recess lengths[J]. International Journal of Multiphase Flow, 2021, 138: 103592. |
41 | SAHOO S K, GADGIL H. Dynamics of self-pulsation in gas-centered swirl coaxial injector: An experimental study[J]. Journal of Propulsion and Power, 2021, 37(3): 450-462. |
42 | EBERHART C J, FREDERICK R A Jr. Details on the mechanism of high-frequency swirl coaxial self-pulsation[J]. Journal of Propulsion and Power, 2017, 33(6): 1418-1427. |
43 | HUANG Y H, ZHOU J, HU X P, et al. Acoustic model for the self-oscillation of coaxial swirl injector: AIAA-1997-3328 [R]. Reston: AIAA, 1997. |
44 | 黄玉辉, 周进, 胡小平, 等. 气液同轴式喷嘴自激振荡的试验现象和声学模型及对火箭发动机不稳定燃烧的影响[J]. 声学学报, 1998, 23(5): 459-465. |
HUANG Y H, ZHOU J, HU X P, et al. Experiment and acoustic model for the self-oscillation of coaxial swirl injector and its influence to combustion of liquid rocket engine[J]. Acta Acustica, 1998, 23(5): 459-465 (in Chinese). | |
45 | KIM B D, HEISTER S. Effect of chamber pressure variation on high-frequency hydrodynamic instability of shear coaxial injector: AIAA-2004-3522 [R]. Reston: AIAA, 2004. |
46 | IM J H, YOON Y. The effects of the ambient pressure on self-pulsation characteristics of a gas/liquid swirl coaxial injector: AIAA-2008-4850[R]. Reston: AIAA, 2008. |
47 | KANG Z T, LI Q L, CHENG P, et al. Effects of recess on the self-pulsation characteristics of liquid-centered swirl coaxial injectors[J]. Journal of Propulsion and Power, 2016, 32(5): 1124-1132. |
48 | SASAKI M, SAKAMOTO H, TAKAHASHI M, et al. Comparative study of recessed and non-recessed swirl coaxial injectors: AIAA-1997-2907 [R]. Reston: AIAA, 1997. |
49 | IM J H, KIM D, YOON Y, et al. Self-pulsation characteristics of a swirl coaxial injector with various injection and geometric conditions: AIAA-2005-3749 [R]. Reston: AIAA, 2005. |
50 | IM J H, CHO S, YOON Y, et al. Comparative study of spray characteristics of gas-centered and liquid-centered swirl coaxial injectors[J]. Journal of Propulsion and Power, 2010, 26(6): 1196-1204. |
51 | 康忠涛, 张新桥, 成鹏, 等. 气核尺寸对气液同轴离心式喷嘴自激振荡的影响[J]. 航空学报, 2014, 35(12): 3283-3292. |
KANG Z T, ZHANG X Q, CHENG P, et al. Influence of gas core dimension on self-pulsation of gas-liquid swirl coaxial injector[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3283-3292 (in Chinese). | |
52 | 康忠涛, 王振国, 李清廉, 等. 压力振荡对气液同轴离心式喷嘴自激振荡的影响[J]. 航空学报, 2018, 39(6): 121988. |
KANG Z T, WANG Z G, LI Q L, et al. Influence of pressure oscillation on self-pulsation of gas-liquid swirl coaxial injector[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 121988 (in Chinese). | |
53 | NUNOME Y, SAKAMOTO H, TAMURA H, et al. An experimental study of super-pulsating flow on a shear coaxial injector with a recessed inner post: AIAA-2007-5560 [R]. Reston: AIAA, 2007. |
54 | NUNOME Y, TAMURA H, ONODERA T, et al. Effect of liquid disintegration on flow instability in a recessed region of a shear coaxial injector: AIAA-2009-5389 [R]. Reston: AIAA, 2009. |
55 | YOON J, CHUNG J M, YOON Y. Study on self-pulsation characteristics of gas centered shear coaxial injector for supercavitating underwater propulsion system[J]. International Journal of Naval Architecture and Ocean Engineering, 2011, 3(4): 286-292. |
56 | YOON J, CHUNG J M, YOON Y. Study on self-pulsation characteristics of gas/liquid shear coaxial injector with annular liquid sheets: AIAA-2012-3859 [R]. Reston: AIAA, 2012. |
57 | CHUNG J M, YOON J, YOON Y. Effect of recess length on instability in a gas-centered liquid annular jet[J]. Atomization and Sprays, 2015, 25(1): 1-21. |
58 | IM J H, YOON Y, BAZAROV V G. Experiment study on self-pulsation of a gas/liquid swirl coaxial injector in high pressure environment [C]∥ 60th International Astronautical Congress. Paris: IAF, 2009: 6708-6716. |
59 | BAI X, CHENG P, LI Q L, et al. Effects of self-pulsation on combustion instability in a liquid rocket engine[J]. Experimental Thermal and Fluid Science, 2020, 114: 110038. |
60 | GONZALEZ-FLESCA M, SCHMITT T, DUCRUIX S, et al. Large eddy simulations of a transcritical round jet submitted to transverse acoustic modulation[J]. Physics of Fluids, 2016, 28(5): 055106. |
61 | ZHANG P Y, WANG B. Effects of elevated ambient pressure on the disintegration of impinged sheets[J]. Physics of Fluids, 2017, 29(4): 042102. |
62 | RUTARD N, DOREY L H, LE TOUZE C, et al. Large-eddy simulation of an air-assisted liquid jet under a high-frequency transverse acoustic forcing[J]. International Journal of Multiphase Flow, 2020, 122: 103144. |
63 | HEIDMANN M F, WIEBER P R. Analysis of n-heptane vaporization in unstable combustor with travelling transverse oscillations: NASA-TN-D-3424-1965 [R]. Washington, D. C.: NASA, 1965. |
64 | MIESSE C C. The effect of ambient pressure oscillations on the disintegration and dispersion of a liquid jet[J]. Journal of Jet Propulsion, 1955, 25(10): 525-530. |
65 | SRINIVASAN V, SALAZAR A J, SAITO K. Modeling the disintegration of modulated liquid jets using volume-of-fluid (VOF) methodology[J]. Applied Mathematical Modelling, 2011, 35(8): 3710-3730. |
66 | YANG X C, TURAN A L. Simulation of liquid jet atomization coupled with forced perturbation[J]. Physics of Fluids, 2017, 29(2): 022103. |
67 | HEISTER S D, RUTZ M W, HILBING J H. Effect of acoustic perturbations on liquid jet atomization[J]. Journal of Propulsion and Power, 1997, 13(1): 82-88. |
68 | 李佳楠, 雷凡培, 杨岸龙, 等. 强迫扰动下的射流撞击雾化特性[J]. 航空学报, 2020, 41(12): 124027. |
LI J N, LEI F P, YANG A L, et al. Atomization characteristics of impinging liquid jets coupled with forced perturbation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124027 (in Chinese). | |
69 | HARVAZINSKI M E, ANDERSON W E, MERKLE C L. Analysis of self-excited combustion instabilities using two- and three-dimensional simulations[J]. Journal of Propulsion and Power, 2013, 29(2): 396-409. |
70 | HARVAZINSKI M E, HUANG C, SANKARAN V, et al. Coupling between hydrodynamics, acoustics, and heat release in a self-excited unstable combustor[J]. Physics of Fluids, 2015, 27(4): 045102. |
71 | HARVAZINSKI M E, HUANG C, SANKARAN V, et al. Combustion instability mechanisms in a pressure-coupled gas-gas coaxial rocket injector: AIAA-2013-3990 [R]. Reston: AIAA, 2013. |
72 | HARVAZINSKI M, ANDERSON W, MERKLE C. Combustion instability diagnostics using the Rayleigh index: AIAA-2011-5548 [R]. Reston: AIAA, 2011. |
73 | GRAHAM W R, PERAIRE J, TANG K Y. Optimal control of vortex shedding using low-order models. Part I?open-loop model development[J]. International Journal for Numerical Methods in Engineering, 1999, 44(7): 945-972. |
74 | GRAHAM J, LEYVA I, RODRIGUEZ J, et al. On the effect of a transverse acoustic field on a flush shear coaxial injector: AIAA-2009-5142 [R]. Reston: AIAA, 2009. |
75 | SCHMITT T, RODRIGUEZ J, LEYVA I A, et al. Experiments and numerical simulation of mixing under supercritical conditions[J]. Physics of Fluids, 2012, 24(5): 055-104. |
76 | WEGENER J L, FORLITI D J, LEYVA I A, et al. Receptivity of a cryogenic coaxial gas-liquid jet to acoustic disturbances: AIAA-2014-3487 [R]. Reston: AIAA, 2014. |
77 | HAKIM L, SCHMITT T, DUCRUIX S, et al. Dynamics of a transcritical coaxial flame under a high-frequency transverse acoustic forcing: influence of the modulation frequency on the flame response[J]. Combustion and Flame, 2015, 162(10): 3482-3502. |
78 | RUIZ A, SCHMITT T, SELLE L, et al. Effects of the recess length of a coaxial injector on a transcritical LO2/H2 jet flame[C]∥ 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems. Berlin: Springer, 2011: 1-7. |
79 | URBANO A, DOUASBIN Q, SELLE L, et al. Study of flame response to transverse acoustic modes from the LES of a 42-injector rocket engine[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2633-2639. |
80 | URBANO A, SELLE L, STAFFELBACH G, et al. Exploration of combustion instability triggering using large eddy simulation of a multiple injector liquid rocket engine[J]. Combustion and Flame, 2016, 169: 129-140. |
81 | MASQUELET M, MENON S. Large-eddy simulation of flame-turbulence interactions in a shear coaxial injector[J]. Journal of Propulsion and Power, 2010, 26(5): 924-935. |
82 | MASQUELET M, MENON S, JIN Y, et al. Simulation of unsteady combustion in a LOX-GH2 fueled rocket engine[J]. Aerospace Science and Technology, 2009, 13(8): 466-474. |
83 | WANG X J, HUO H F, WANG Y X, et al. Comprehensive study of cryogenic fluid dynamics of swirl injectors at supercritical conditions[J]. AIAA Journal, 2017, 55(9): 3109-3119. |
84 | WANG X J, WANG Y X, YANG V. Geometric effects on liquid oxygen/kerosene Bi-swirl injector flow dynamics at supercritical conditions[J]. AIAA Journal, 2017, 55(10): 3467-3475. |
85 | WANG X J, LI Y X, WANG Y X, et al. Near-field flame dynamics of liquid oxygen/kerosene bi-swirl injectors at supercritical conditions[J]. Combustion and Flame, 2018, 190: 1-11. |
86 | WANG X J, YEH S T, CHANG Y H, et al. A high-fidelity design methodology using LES-based simulation and POD-based emulation: A case study of swirl injectors[J]. Chinese Journal of Aeronautics, 2018, 31(9): 1855-1869. |
87 | PRIEM R J, GUENTERT D C. Combustion instability limits determined by a nonlinear theory and a one dimensional model: NASA-TN-D-1409-1962 [R].Washington, D.C.: NASA, 1962. |
88 | PRIEM R J. Theoretical and experimental models for unstable rocket combustor[J]. Symposium (International) on Combustion, 1963, 9(1): 982-992. |
89 | HEIDMANN M F, WIEBER P R. Analysis of frequency response characteristics of propellant vaporization: NASA-TM-X-52195-1966 [R]. Washington, D. C.: NASA, 1966. |
90 | TONG A Y, SIRIGNANO W A. Oscillatory vaporization of fuel droplets in an unstable combustor[J]. Journal of Propulsion and Power, 1989, 5(3): 257-261. |
91 | DUVVUR A. Numerical solution of convective droplet vaporization in an oscillatory gas flow: Application to liquid propellant longitudinal mode combustion instability [D]. Irvine: University of California, 1992. |
92 | DUVVUR A, CHIANG C H, SIRIGNANO W A. Oscillatory fuel droplet vaporization: Driving mechanism for combustion instability[J]. Journal of Propulsion and Power, 1996, 12(2): 358-365. |
93 | LEE G Y, YOON W S. Controlling factors of pressure-coupled combustion responses in a high pressure combustion chamber: AIAA-2004-3519 [R]. Reston: AIAA, 2004. |
94 | LEE G Y, KIM S Y, YOON W S. Oscillatory vaporization and acoustic response of droplet at high pressure[J]. International Communications in Heat and Mass Transfer, 2008, 35(10): 1302-1306. |
95 | YOON W S, KIM S Y. Responses of droplet evaporation to high-pressure oscillations: AIAA-2004-1161[R]. Reston: AIAA, 2004. |
96 | 尹婷, 吴高杨, 聂万胜. 压力振荡环境下液滴蒸发动态响应特性研究[J]. 火箭推进, 2015, 41(4): 19-28. |
YIN T, WU G Y, NIE W S. Study on dynamic response characteristics of droplet evaporation in pressure oscillation environment[J]. Journal of Rocket Propulsion, 2015, 41(4): 19-28 (in Chinese). | |
97 | TIEN J S, SIRIGNANO W A. Unsteady thermal response of the condensed-phase fuel adjacent to a reacting gaseous boundary layer[J]. Symposium (International) on Combustion, 1971, 13(1): 529-539. |
98 | PRIEM R J, HEIDMANN M F. Propellant vaporization as a design criterion for rocket-engine combustion chambers: NASA-TR-R-67-l960 [R]. Washington, D. C.: NASA, 1960. |
99 | BHATIA R, SIRIGNANO W A. One-dimensional analysis of liquid-fueled combustion instability[J]. Journal of Propulsion and Power, 1991, 7(6): 953-961. |
100 | REARDON F H, An investigation on transverse mode combustion instability in liquid propellant rocket motors [D]. New Jersey: Princeton University, 1961. |
101 | REARDON F H, CROCCO L, HARRJE D T. Velocity effects in transverse mode liquid propellant rocket combustion instability[J]. AIAA Journal, 1964, 2(9): 1631-1641. |
102 | 庄逢辰, 聂万胜, 周进, 等. 应用隔板抑制液体火箭发动机不稳定燃烧的数值模拟[J]. 指挥技术学院学报, 1997, 8(1): 1-12. |
ZHUANG F C, NIE W S, ZHOU J, et al. Numerical simulation of applicating baffles to suppression of combustion instabilities in liquid rocket engine[J]. Journal of Equipment Academy, 1997, 8(1): 1-12 (in Chinese). | |
103 | LEVINE R S. Development problems in large liquid rocket engines [C]∥ Third AGARD. Brussels: NATO, 1958. |
104 | LEVINE R S. Experimental status of high frequency liquid rocket combustion instability[J]. Symposium (International) on Combustion, 1965, 10(1): 1083-1099. |
105 | INGARD U, ISING H. Acoustic nonlinearity of an orifice[J]. The Journal of the Acoustical Society of America, 1967, 42(1): 6-17. |
106 | SIRIGNANO W A. A theoretical study of nonlinear combustion instability: longitudinal mode [D]. New Jersey: Princeton University, 1964. |
107 | ZINN B T. A theoretical study of nonlinear transverse combustion instability in liquid propellant rocket motors [D]. New Jersey: Princeton University, 1966. |
108 | ZINN B T. A theoretical study of non-linear damping by Helmholtz resonators[J]. Journal of Sound and Vibration, 1970, 13(3): 347-356. |
109 | F?RNER K, CáRDENAS MIRANDA A, POLIFKE W. Mapping the influence of acoustic resonators on rocket engine combustion stability[J]. Journal of Propulsion and Power, 2015, 31(4): 1159-1166. |
110 | ZINN B T. Longitudinal mode acoustic losses in short nozzles[J]. Journal of Sound and Vibration, 1972, 22(1): 93-105. |
111 | LIOI C, KU D, YANG V. Linear acoustic analysis of the preburner of an oxidizer-rich staged combustion engine[J]. Journal of Propulsion and Power, 2018, 35(2): 396-402. |
112 | PIERINGER J, SATTELMAYER T, FASSL F. Simulation of combustion instabilities in liquid rocket engines with acoustic perturbation equations[J]. Journal of Propulsion and Power, 2009, 25(5): 1020-1031. |
113 | 袁磊. 空气加热器高频燃烧不稳定维持机理研究[D]. 长沙: 国防科技大学, 2018. |
YUAN L. Study on self-sustained mechanism of high frequency combustion instability in air heater[D].Changsha: National University of Defense Technology, 2018 (in Chinese). | |
114 | NUSCA M J, MATHIS N P, MICHAELS R S. Computational modeling of injection throttling using a new class bipropellants in the army’s impinging stream vortex engine [C]∥ Proceedings of the 4th JANNAF Liquid Propulsion Subcommittee Meeting. Columbia: JHUERG, 2008. |
115 | NUSCA M J. MICHAELS R S. Development of a computational model for the impinging stream vortex engine [C]∥ Proceedings of the 39th JANNAF Combustion Subcommittee Meeting. Columbia: JHUERG, 2003. |
116 | NUSCA M J. MICHAELS R S. Development of a computational model for the army’s impinging stream vortex engine [C]∥ Proceedings of the 1st JANNAF Liquid Propulsion Subcommittee Meeting. Columbia: JHUERG, 2004. |
117 | NUSCA M J. MICHAELS R S. Computational modeling of hypergolic ignition in the army’s impinging stream vortex engine [C]∥ Proceedings of the 2nd JANNAF Liquid Propulsion Subcommittee Meeting. Columbia: JHUERG, 2005. |
118 | NUSCA M J, MATHIS N P, MICHAELS R S. Computational modeling of the army’s impinging stream vortex engine with an injection throttling system [C]∥ Proceedings of the 41st JANNAF Combustion Subcommittee Meeting. Columbia: JHUERG, 2006. |
119 | NUSCA M, MATHIS N, MICHAELS S. Modeling hypergolic ignition in the army’s impinging stream vortex engine including injection throttling: AIAA-2007-5443 [R]. Reston: AIAA, 2007. |
120 | NUSCA M. Modeling combustion instability in small MMH-NTO liquid rocket engines using CFD: Injector-chamber coupling: AIAA-2010-1518 [R]. Reston: AIAA, 2010. |
121 | SATTELMAYER T, SCHMID M, SCHULZE M. Interaction of combustion with transverse velocity fluctuations in liquid rocket engines[J]. Journal of Propulsion and Power, 2015, 31(4): 1137-1147. |
122 | 聂万胜. 自燃推进剂火箭发动机燃烧稳定性研究 [D]. 长沙: 国防科技大学,1998. |
NIE W S. Study on combustion stability of hypergolic propellant rocket engine [D]. Changsha: National University of Defense Technology, 1998.(in Chinese) | |
123 | 尕永婧. 液氧煤油模型发动机高频燃烧不稳定性研究[D]. 北京: 清华大学, 2012. |
GA Y J. Research on the high frequency combustion instability in the model of LOX/kerosene engine[D].Beijing: Tsinghua University, 2012 (in Chinese). | |
124 | QIN J X, ZHANG H Q, WANG B. Numerical evaluation of acoustic characteristics and their damping of a thrust chamber using a constant-volume bomb model[J]. Chinese Journal of Aeronautics, 2018, 31(3): 470-480. |
125 | ANDERSON W, RYAN H, SANTORO R, et al. Combustion instability mechanisms in liquid rocket engines using impinging jet injectors: AIAA-1995-2357 [R]. Reston: AIAA, 1995. |
126 | GARBY R, SELLE L, POINSOT T. Large-Eddy Simulation of combustion instabilities in a variable-length combustor[J]. Comptes Rendus Mecanique, 2013, 341(1-2): 220-229. |
127 | SUMMERFIELD M. A theory of unstable combustion in liquid propellant rocket systems[J]. Journal of the American Rocket Society, 1951, 21(5): 108-114. |
128 | SZUCH J R, WENZEL L. Analysis of chugging in liquid-bipropellant rocket engines using propellants with different vaporization rates: NASA-TN-D-3080-1965 [R]. Washington, D. C.: NASA, 1965. |
129 | SMITH A J, REARSON F H. The sensitive time lag theory and its application to liquid rocket combustion instability problems: AFRPL-TR-67-314[R]. Pasadena: Air Force Rocket Propulsion Laboratory, 1968. |
130 | HUTT J J, ROCKER M. High-frequency injection-coupled combustion instability [J], Progress in Astronautics and Aeronautics, 1995, 169: 345-356. |
131 | CASIANO M J. Extensions to the time lag models for practical application to rocket engine stability design [D]. Pennsylvania: The Pennsylvania State University, 2010. |
132 | 汪广旭, 谭永华, 庄逢辰, 等. 自燃推进剂模型燃烧室高频纵向燃烧不稳定性[J]. 航空动力学报, 2020, 35(8): 1578-1585. |
WANG G X, TAN Y H, ZHUANG F C, et al. High frequency longitudinal combustion instability of modeled hypergolic propellants combustor[J]. Journal of Aerospace Power, 2020, 35(8): 1578-1585 (in Chinese). | |
133 | MUSS J A, NGUYEN T V, JOHNSON C W. User’s manual for rocket combustor interactive design (ROCCID) and analysis computer program, Volume I-User’s Manual: NASA-CR -187109-1991 [R]. Washington, D. C.: NASA, 1991. |
134 | MUSS J, NGUYEN T V, JOHNSON C W. User’s manual for rocket combustor interactive design (ROCCID) and analysis computer program. Volume Ⅱ: Appendixes A-K: NASA-CR-187110 -1991 [R]. Washington, D. C.: NASA, 1991. |
135 | O’HARA L, YU Y, ANDERSON W, et al. A vortex shedding-based combustion response model applied to an unstable liquid rocket combustor: AIAA-2009-5136 [R]. Reston: AIAA, 2009. |
136 | TAMANAMPUDI G M R, ANDERSON W E. Development of combustion instability analysis tool by incorporating combustion response models: AIAA-2015-4165 [R]. Reston: AIAA, 2015. |
137 | HUANG C, GEJJI R M, ANDERSON W E, et al. Combustion dynamics behavior in a single-element lean direct injection (LDI) gas turbine combustor: AIAA-2014-3433 [R]. Reston: AIAA, 2014. |
138 | HUANG C, ANDERSON W, MERKLE C. Multi-fidelity framework explorations for nonlinear Euler equations[C]∥ 53rd AIAA/SAE/ASEE Joint Propulsion Confer-ence. Reston: AIAA, 2017. |
139 | ALESSANDRO S, FREZZOTTI M L, FAVINI B, et al. A multi-dimensional approach for low order modeling of combustion instability in a rocket combustor: AIAA-2018-4677[R]. Reston: AIAA, 2018. |
140 | FREZZOTTI M L, ALESSANDRO S, GALLO G, et al. Low-order modeling of coupling effects between propellant injection and pressure fluctuations in high frequency combustion instability [C]∥ Proceedings of Space Propulsion, 2018. |
141 | 汪广旭, 谭永华, 陈建华, 等. 考虑喷注流强分布的纵向稳定性建模与分析[J]. 航空学报, 2021, 42(6): 124510. |
WANG G X, TAN Y H, CHEN J H, et al. Modeling and analysis of longitudinal stability considering injection intensity distribution[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124510 (in Chinese). | |
142 | KIRCHHOFF G. Vorlesungen über mathematische Physik Mechanik[M]. 1877 (in Chinese). |
143 | FLANDRO G. Approximate analysis of nonlinear instability with shock waves: AIAA-1982-1220 [R]. Reston: AIAA, 1982. |
144 | FLANDRO G A. Energy balance analysis of nonlinear combustion instability[J]. Journal of Propulsion and Power, 1985, 1(3): 210-221. |
145 | 汪广旭, 谭永华, 陈建华, 等. 液体火箭发动机非稳态燃烧过程对其稳定性的影响[J]. 航空动力学报, 2019, 34(4): 929-936. |
WANG G X, TAN Y H, CHEN J H, et al. Effects of unsteady combustion process on combustion instability of liquid rocket engine[J]. Journal of Aerospace Power, 2019, 34(4): 929-936 (in Chinese). | |
146 | 汪广旭, 付秀文, 石晓波, 等. 燃烧室非线性压力振荡及其产生机理研究[J]. 火箭推进, 2016, 42(2): 29-34, 58. |
WANG G X, FU X W, SHI X B, et al. Study on nonlinear pressure oscillation and its mechanism in combustion chamber[J]. Journal of Rocket Propulsion, 2016, 42(2): 29-34, 58 (in Chinese). | |
147 | FREZZOTTI M L, D’ALESSANDRO S, FAVINI B, et al. Numerical issues in modeling combustion instability by quasi-1D Euler equations[J]. International Journal of Spray and Combustion Dynamics, 2017, 9(4): 349-366. |
148 | SUBRAMANIAN P. Dynamical systems approach to the investigation of thermoacoustic instabilities [D]. Chennai: Indian Institute of Technology Madras, 2011. |
149 | SUBRAMANIAN P, SUJITH R I, WAHI P. Subcritical bifurcation and bistability in thermoacoustic systems[J]. Journal of Fluid Mechanics, 2013, 715: 210-238. |
150 | SUJITH R I, JUNIPER M P, SCHMID P J. Non-normality and nonlinearity in thermoacoustic instabilities[J]. International Journal of Spray and Combustion Dynamics, 2016, 8(2): 119-146. |
151 | SUJITH R I, UNNIVR. Complex system approach to investigate and mitigate thermoacoustic instability in turbulent combustors[J]. Physics of Fluids, 2020, 32(6): 061401. |
152 | 汪广旭, 谭永华, 庄逢辰, 等. 喷注流强分布对高频纵向燃烧不稳定性抑制效果[J]. 航空学报, 2022, 43(9): 126018. |
WANG G X, TAN Y H, ZHUANG F C, et al. Suppression effect of injection intensity distribution on longitudinal combustion instability[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 126018 (in Chinese). |
/
〈 |
|
〉 |