论文

反压对撞击式喷嘴雾化特性影响

  • 吴慧博 ,
  • 杨岸龙 ,
  • 张锋 ,
  • 杨宝娥 ,
  • 连俊恺 ,
  • 汤成龙
展开
  • 1.西安航天动力研究所 航天液体动力全国重点实验室,西安 710100
    2.西安交通大学 能源与动力工程学院,西安 710049
.E-mail: beryl_yang12@sina.com

收稿日期: 2023-06-25

  修回日期: 2023-07-20

  录用日期: 2023-11-20

  网络出版日期: 2023-12-07

基金资助

基础研究项目群项目(514010106-101);国家自然科学基金(52236001)

Effects of back pressure on atomization characteristics of impinging jet injector

  • Huibo WU ,
  • Anlong YANG ,
  • Feng ZHANG ,
  • Baoe YANG ,
  • Junkai LIAN ,
  • Chenglong TANG
Expand
  • 1.National Key Laboratory of Aerospace Liquid Propulsion,Xi’an Aerospace Propulsion Institute,Xi’an 710100,China
    2.School of Energy and Power Engineering,Xi’an Jiaotong University,Xi’an 710049,China

Received date: 2023-06-25

  Revised date: 2023-07-20

  Accepted date: 2023-11-20

  Online published: 2023-12-07

Supported by

Basic Research Program(514010106-101);National Natural Science Foundation of China(52236001)

摘要

针对反压条件下雾化数据缺乏、雾化机制不清的问题,采用直流自击喷嘴,在反压雾化实验仓中开展了0.1~4.1 MPa环境条件下的雾化特性宏观及微观实验研究。基于高速阴影成像方法获得了不同反压下自击喷嘴的喷雾宏观形貌并提取出雾化角、雾化场液滴速度分布等数据,进一步通过相位多普勒粒子分析(PDPA)激光测量手段获得了不同反压下液滴直径概率密度分布及索特平均直径(SMD)等微观特性参数。实验结果表明,高反压会导致喷雾总体发展受到压缩,雾化角减小,且雾化液滴的数量密度更为稠密;液滴速度随着反压增大,衰减更为显著;但液滴SMD随反压增大呈现非单调演化规律,且演化规律与沿喷孔出口的竖直距离有关,即当反压小于1.1 MPa时,液滴SMD随反压的增大而减小,在H=20 mm处,当反压从1.1 MPa增大到3.1 MPa,SMD基本保持不变,而进一步增大反压时,SMD逐渐增大。在H=30 mm处,当反压大于1.1 MPa时,SMD逐渐增大。分析认为,反压增大导致更高的液滴数量密度,提升了液滴碰撞并聚合的概率,使高反压下液滴SMD增大。

本文引用格式

吴慧博 , 杨岸龙 , 张锋 , 杨宝娥 , 连俊恺 , 汤成龙 . 反压对撞击式喷嘴雾化特性影响[J]. 航空学报, 2024 , 45(11) : 529213 -529213 . DOI: 10.7527/S1000-6893.2023.29213

Abstract

Aiming at the lack of atomization data and unclear atomization mechanism under back pressure, we conducted both macro and micro experimental research on atomization characteristics under the back pressure of 0.1–4.1 MPa using an impinging jet injector. Based on the high-speed shadow imaging method, the spray macro-morphology of the impinging jet injector under back pressure was obtained, and the atomization angle, the spatial distribution of droplet velocity in the spray field and other data extracted. Furthermore, the microscopic parameters such as the probability density distribution of droplet size and the Sauter Mean Diameter (SMD) under back pressure were obtained by the Phase Doppler Particle Analysis (PDPA) laser measurement method. The experimental results show that high back pressure compresses the overall development of spray, reduces the atomization angle, and increases the number density of atomized droplets. With the increase of back pressure, the droplet velocity attenuates more significantly. However, the SMD of droplets shows a non-monotonic evolution law with the increase of back pressure, and the evolution law is related to the vertical distance along the nozzle outlet. At a back pressure smaller than 1.1 MPa, the SMD of droplets decreases with the increase of back pressure. At H=20 mm, when the back pressure increases from 1.1 MPa to 3.1 MPa, the SMD remains basically unchanged, while further increasing back pressure leads to gradual SMD increase. At H=30 mm, back pressure larger than 1.1 MPa results in gradual SMD increase. It is considered that the increase of back pressure leads to higher droplet number density and increases the probability of droplet collision and polymerization, explaining the increase of droplet SMD under high back pressure.

参考文献

1 杨立军, 富庆飞. 液体火箭发动机推力室设计[M]. 北京: 北京航空航天大学出版社, 2013: 77-90.
  YANG L J, FU Q F. Design of thrust chamber of liquid rocket engine[M]. Beijing: Beihang University Press, 2013: 77-90 (in Chinese).
2 LIN K C, KENNEDY P, JACKSON T. Structures of water jets in a Mach 1.94 supersonic crossflow[C]∥ Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004.
3 费俊, 孙璠, 杨伟东, 等. 射流撞击雾化液滴运动过程与粒径分布特性的试验研究[J]. 火箭推进201541(1): 10-14, 35.
  FEI J, SUN F, YANG W D, et al. Experimental analysis on movement and size distribution of atomized droplets from impinging liquid jet[J]. Journal of Rocket Propulsion201541(1): 10-14, 35 (in Chinese).
4 张蒙正, 张泽平, 李鳌, 等. 两股互击式喷嘴雾化性能实验研究[J]. 推进技术200021(1): 57-59.
  ZHANG M Z, ZHANG Z P, LI A, et al. Experimental research on spray properties of unlike impinging injectors[J]. Journal of Propulsion Technology200021(1): 57-59 (in Chinese).
5 张蒙正, 傅永贵, 张泽平, 等. 两股互击式喷嘴雾化研究及应用[J]. 推进技术199920(2): 73-76.
  ZHANG M Z, FU Y G, ZHANG Z P, et al. Spray Property Research and application of unlike impinging injector[J]. Journal of Propulsion Technology199920(2): 73-76 (in Chinese).
6 刘孝弟, 顾学颖, 弭艳. 直流自击式喷嘴雾化特性研究[J]. 火箭推进201642(1): 13-19.
  LIU X D, GU X Y, MI Y. Research on atomization performance of jet impinging nozzle[J]. Journal of Rocket Propulsion201642(1): 13-19 (in Chinese).
7 DOMBROWSKI N, HOOPER P C. The performance characteristics of an impinging jet atomizer in atmospheres of high ambient density[J]. Fuel196241(4): 323-334.
8 唐亮. 火箭发动机同轴式喷嘴雾化特性研究[D]. 长沙: 国防科学技术大学, 2004: 25-30.
  TANG L. The study of atomization character of coaxial injector in rocket engine[D].Changsha: National University of Defense Technology, 2004: 25-30. (in Chinese)
9 李佳楠, 雷凡培, 周立新. 背压对撞击式喷嘴雾化特性影响研究[J]. 推进技术202041(4): 847-859.
  LI J N, LEI F P, ZHOU L X. Effects of backpressure on atomization characteristics of impinging jet injector[J]. Journal of Propulsion Technology202041(4): 847-859 (in Chinese).
10 李佳楠, 费俊, 杨伟东, 等. 直流互击式喷注单元雾化特性准直接数值模拟[J]. 推进技术201637(4): 713-725.
  LI J N, FEI J, YANG W D, et al. Quasi-direct numerical simulation on atomization characteristics of impinging jets injector[J]. Journal of Propulsion Technology201637(4): 713-725 (in Chinese).
11 张亮, 陆振华, 刘玉峰. 背压环境下压力喷嘴雾化特性实验研究[J]. 热能动力工程201631(4): 74-78, 146.
  ZHANG L, LU Z H, LIU Y F. Experimental study on the atomization characteristics of pressure nozzle[J]. Journal of Engineering for Thermal Energy and Power201631(4): 74-78, 146 (in Chinese).
12 朱呈祥, 郑浩铭, 尤延铖. 高压环境下剪切稀化非牛顿撞击射流直接数值模拟[J]. 航空学报201940(6): 122783.
  ZHU C X, ZHENG H M, YOU Y C. Direct numerical simulation of impinging jet with non-Newtonian shear thinning properties at high ambient pressure[J]. Acta Aeronautica et Astronautica Sinica201940(6): 122783 (in Chinese).
13 朱呈祥, 陈荣钱, 尤延铖. 低韦伯数非牛顿射流撞击破碎直接数值模拟[J]. 航空学报201738(8): 120764.
  ZHU C X, CHEN R Q, YOU Y C. Direct numerical simulation of impinging jet breakup with non-Newtonian properties at low Weber number[J]. Acta Aeronautica et Astronautica Sinica201738(8): 120764 (in Chinese).
14 高琦翔, 张丁为, 杨立军, 等. 反压条件下离心喷嘴动态特性实验[J]. 航空学报202344(7): 127130.
  GAO Q X, ZHANG D W, YANG L J, et al. Experiment on dynamic characteristics of swirl injector under back pressure[J]. Acta Aeronautica et Astronautica Sinica202344(7): 127130 (in Chinese).
15 陈波, 高殿荣, 杨超, 等. 基于PDPA的双流体撞击式喷嘴雾化特性研究[J]. 农业机械学报201748(4): 362-369.
  CHEN B, GAO D R, YANG C, et al. Atomizing characteristics of twin-fluid impact nozzle based on PDPA[J]. Transactions of the Chinese Society for Agricultural Machinery201748(4): 362-369 (in Chinese).
16 李雁飞, 郭恒杰, 马骁, 等. 不同背压下GDI油束的喷雾过程研究[J]. 内燃机工程201738(3): 52-59.
  LI Y F, GUO H J, MA X, et al. Spray characteristics of GDI jet under varied back pressure[J]. Chinese Internal Combustion Engine Engineering201738(3): 52-59 (in Chinese).
17 Bossard J A. Droplet size distributions in sprays: Synthesis and effects in combustion [D]. Arizona State: Arizona State University, 1996: 23-26.
18 MUGELE R A, EVANS H D. Droplet size distribution in sprays[J]. Industrial & Engineering Chemistry195143(6): 1317-1324.
19 夏盛勇, 胡春波, 张胜敏, 等. 不同聚集因素对燃烧室凝相颗粒粒度分布的影响[J]. 固体火箭技术201235(2): 271-275.
  XIA S Y, HU C B, ZHANG S M, et al. Effect of different aggregation factors on condensed particle size distribution in the chamber of SRM[J]. Journal of Solid Rocket Technology201235(2): 271-275 (in Chinese).
20 ZHANG P, LAW C K. An analysis of head-on droplet collision with large deformation in gaseous medium[J]. Physics of Fluids201123(4): 42102-42102-22 .
21 ZHANG F H, LI E Q, THORODDSEN S T. Satellite formation during coalescence of unequal size drops[J]. Physical Review Letters2009102(10): 104502.
22 TANG C L, ZHANG P, LAW C K. Bouncing, coalescence, and separation in head-on collision of unequal-size droplets[J]. Physics of Fluids201224(2): 22101-22101-15 .
23 QIAN J, LAW C K. Regimes of coalescence and separation in droplet collision[J]. Journal of Fluid Mechanics1997331(1): 59-80.
24 WILLIS K, ORME M. Binary droplet collisions in a vacuum environment: An experimental investigation of the role of viscosity[J]. Experiments in Fluids200334(1): 28-41.
25 BACH G A, KOCH D L, GOPINATH A. Coalescence and bouncing of small aerosol droplets[J]. Journal of Fluid Mechanics2004518: 157-185.
26 GOPINATH A, KOCH D L. Collision and rebound of small droplets in an incompressible continuum gas[J]. Journal of Fluid Mechanics2002454(1): 145-201.
文章导航

/