航空颠覆性技术初探
收稿日期: 2023-11-20
修回日期: 2023-11-22
录用日期: 2023-11-23
网络出版日期: 2023-12-01
Disruptive technologies in aviation: Preliminary study
Received date: 2023-11-20
Revised date: 2023-11-22
Accepted date: 2023-11-23
Online published: 2023-12-01
颠覆性技术凭借其所体现出的创新性和破坏性,持续引领人类生产生活和作战方式变革,在大国兴衰和文明演进过程中也发挥了重要作用。航空发展史上,出现了众多替代原有技术的颠覆性技术,深刻影响了航空的发展进程,塑造出了当今空中作战和民航运输的基本形态。当前,世界正处于新一轮工业革命和军事革命加速到来的十字路口,能否对于包含航空领域在内的各类颠覆性技术开展识别、研究和产业化,对于重塑未来社会形态和军事格局至关重要。本文从概念内涵、3个显著特征、识别与获取等方面浅谈了对颠覆性技术的认识,论述了颠覆性技术对前三次工业革命的重要影响,举例说明了历史上5个典型航空颠覆性技术带来的显著变革,分析了未来航空科技高能化和智能化复合发展的重要趋势,预判了材料制造、能源动力、信息电子和交叉融合4个领域9项可能的航空颠覆性技术及潜在影响,提出了发展航空颠覆性技术的若干建议,期待未来的航空颠覆性技术写上更多中国人的名字。
樊会涛 , 段鹏飞 , 袁成 . 航空颠覆性技术初探[J]. 航空学报, 2024 , 45(5) : 529893 -529893 . DOI: 10.7527/S1000-6893.2023.29893
Disruptive technologies, with their innovative and destructive characteristics, have been leading the transformation of human mode of life and combat operations, and also playing an important role in the rise and fall of major powers and civilization evolution. In the history of aviation, numerous disruptive technologies have emerged to replace the previous technologies, profoundly influencing the process of aviation and shaping the basic pattern of today's air combat and civil aviation transportation. The world is currently at the crossroads of a new round of industrial and military revolution, and whether it is possible to identify, research, and industrialize various disruptive technologies including those in the aviation field is crucial for reshaping the future social form and military landscape. This article briefly illustrates the understanding of disruptive technologies from the aspects of concept, three significant characteristics, and identification and acquisition. The important influence of disruptive technologies on the previous three industrial revolutions is discussed, the significant changes brought by five typical aviation disruptive technologies in history presented, the important trend of the high-energy and intelligent compound development of aviation science and technology in the future analyzed, nine possible disruptive technologies and potential impacts in the four fields of material manufacturing, energy power, information electronics and cross-integration predicted, and suggestions for the development of disruptive technologies in aviation proposed. We expect that more future disruptive technologies in aviation will be initiated and developed by Chinese people.
1 | 钟文丽, 赵金辉, 杨筱. 推进颠覆性技术发展是大国博弈的战略选择[J]. 国防科技, 2018, 39(5): 43-47. |
ZHONG W L, ZHAO J H, YANG X. Promoting disruptive technology development is a strategic choice for big powers[J]. Defense Technology Review, 2018, 39(5): 43-47 (in Chinese). | |
2 | 曲冠楠, 陈凯华, 陈劲. 颠覆性技术创新:理论源起、整合框架与发展前瞻[J]. 科研管理, 2023, 44(9): 1-9. |
QU G N, CHEN K H, CHEN J. Disruptive technovation: origins, integrated framework, and prospects[J]. Science Research Management, 2023, 44(9): 1-9 (in Chinese). | |
3 | 刘安蓉, 李莉, 曹晓阳, 等. 颠覆性技术概念的战略内涵及政策启示[J]. 中国工程科学, 2018, 20(6): 7-13. |
LIU A R, LI L, CAO X Y, et al. The strategic connotation and policy enlightenment of the concept of disruptive technology[J]. Strategic Study of CAE, 2018, 20(6): 7-13 (in Chinese). | |
4 | 苏鹏, 苏成, 潘云涛. 颠覆性技术识别方法发展现状及启示[J]. 图书情报工作, 2019, 63(20): 129-138. |
SU P, SU C, PAN Y T. Overview and considerations on disruptive technology identification method[J]. Library and Information Service, 2019, 63(20): 129-138 (in Chinese). | |
5 | 荆象新, 锁兴文, 耿义峰. 颠覆性技术发展综述及若干启示[J]. 国防科技, 2015, 36(3): 11-13. |
JING X X, SUO X W, GENG Y F. Review and revelation on disruptive technology development[J]. National Defense Science & Technology, 2015, 36(3): 11-13 (in Chinese). | |
6 | 王志勇, 党晓玲, 刘长利, 等. 颠覆性技术的基本特征与国外研究的主要做法[J]. 国防科技, 2015, 36(3): 14-17, 22. |
WANG Z Y, DANG X L, LIU C L, et al. Characteristics of disruptive technology and international research survey[J]. National Defense Science & Technology, 2015, 36(3): 14-17, 22 (in Chinese). | |
7 | 王超, 许海云, 方曙. 颠覆性技术识别与预测方法研究进展[J]. 科技进步与对策, 2018, 35(9): 152-160. |
WANG C, XU H Y, FANG S. Progress of approaches for identification and forecasting of disruptive technologies[J]. Science & Technology Progress and Policy, 2018, 35(9): 152-160 (in Chinese). | |
8 | 黄鲁成, 成雨, 吴菲菲, 等. 关于颠覆性技术识别框架的探索[J]. 科学学研究, 2015, 33(5): 654-664. |
HUANG L C, CHENG Y, WU F F, et al. Study on identification framework of disruptive technology[J]. Studies in Science of Science, 2015, 33(5): 654-664 (in Chinese). | |
9 | 宁朝山. 工业革命演进与新旧动能转换: 基于历史与逻辑视角的分析[J]. 宏观经济管理, 2019(11): 18-27. |
NING C S. The evolution of the industrial revolution and replacing old growth drivers with new ones—an analysis from the historical and logical perspective[J]. Macroeconomic Management, 2019(11): 18-27 (in Chinese). | |
10 | 龚淑林. 美国第二次工业革命及其影响[J]. 南昌大学学报(人文社会科学版), 1988, 19(1): 67-74, 101. |
GONG S L. The second American industrial revolution and its influence[J]. Journal of Nanchang University (Social Science), 1988, 19(1): 67-74, 101 (in Chinese). | |
11 | 游翰霖, 陈方舟, 成清. 从大国博弈视角解读与应对第三次抵消战略[J]. 国防科技, 2017, 38(4): 88-93. |
YOU H L, CHEN F Z, CHENG Q. Understanding and coping with the Third Offset Strategy from the perspective of superpower games[J]. National Defense Science & Technology, 2017, 38(4): 88-93 (in Chinese). | |
12 | 刘一鸣, 石海明. 技术制胜: 美军第三次“抵消战略” 评析[J]. 指挥与控制学报, 2016, 2(2): 167-171. |
LIU Y M, SHI H M. Technology subduing: analysis of the U.S. third “offset strategy”[J]. Journal of Command and Control, 2016, 2(2): 167-171 (in Chinese). | |
13 | 程不时. 创造了“王牌飞行员” 的机枪协调器[J]. 航空知识, 2006(6): 60. |
CHENG B S. Created the machine Gun coordinator of the “Ace Pilot”[J]. Aerospace Knowledge, 2006(6): 60 (in Chinese). | |
14 | 杨树谦. 精确制导技术发展现状与展望[J]. 航天控制, 2004, 22(4): 17-20. |
YANG S Q. Development and prospect of PGM technology[J]. Aerospace Control, 2004, 22(4): 17-20 (in Chinese). | |
15 | 梁薇, 张科. 精确制导武器发展及其关键技术[J]. 火力与指挥控制, 2008, 33(12): 5-7, 12. |
LIANG W, ZHANG K. Development and key technologies of precise-guidance weapon[J]. Fire Control and Command Control, 2008, 33(12): 5-7, 12 (in Chinese). | |
16 | 朱长征. 飞机的隐身技术现状及发展趋势[J]. 航天电子对抗, 2001, 17(6): 42-45. |
ZHU C Z. Present situation and development trend of stealth technology of aircraft[J]. Aerospace Electronic Warfare, 2001, 17(6): 42-45 (in Chinese). | |
17 | 樊会涛, 闫俊. 空战体系的演变及发展趋势[J]. 航空学报, 2022, 43(10): 527397. |
FAN H T, YAN J. Evolution and development trend of air combat system[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527397 (in Chinese). | |
18 | 陈辛, 张俊宝. 空战模式演变与隐身空战形态发展分析[J]. 航空兵器, 2022, 29(3): 1-7. |
CHEN X, ZHANG J B. Analysis on the evolution of air combat mode and the development of stealth air combat form[J]. Aero Weaponry, 2022, 29(3): 1-7 (in Chinese). | |
19 | 樊会涛, 张蓬蓬. 空空导弹面临的挑战[J]. 航空兵器, 2017, 24(2): 3-7. |
FAN H T, ZHANG P P. The challenges for air-to-air missile[J]. Aero Weaponry, 2017, 24(2): 3-7 (in Chinese). | |
20 | 梁晓庚, 田宏亮. 临近空间高超声速飞行器发展现状及其防御问题分析[J]. 航空兵器, 2016, 23(4): 3-10. |
LIANG X G, TIAN H L. Analysis of the development status and the defense problem of near space hypersonic vehicle[J]. Aero Weaponry, 2016, 23(4): 3-10 (in Chinese). | |
21 | 鲜勇, 李扬. 人工智能技术对未来空战武器的变革与展望[J]. 航空兵器, 2019, 26(5): 26-31. |
XIAN Y, LI Y. Revolution and prospect of artificial intelligence technology for air combat weapons in the future[J]. Aero Weaponry, 2019, 26(5): 26-31 (in Chinese). | |
22 | 刘代军, 王超磊. 空空导弹智能化技术的发展与展望[J]. 航空兵器, 2019, 26(1): 25-29. |
LIU D J, WANG C L. Development and prospect of air-to-air missile intelligentization[J]. Aero Weaponry, 2019, 26(1): 25-29 (in Chinese). | |
23 | 程运江, 张程, 赵日, 等. 人工智能的发展及其在未来战争中的影响与应用思考[J]. 航空兵器, 2019, 26(1): 58-62. |
CHENG Y J, ZHANG C, ZHAO R, et al. Development of artificial intelligence and thoughts on its influence and application in the future war[J]. Aero Weaponry, 2019, 26(1): 58-62 (in Chinese). | |
24 | 乔绅. 超材料与带状线相结合的高Q滤波结构设计[J]. 航空兵器, 2020, 27(3): 79-82. |
QIAO S. Design of high-Q filter structure based on combination of metamaterial and strip line[J]. Aero Weaponry, 2020, 27(3): 79-82 (in Chinese). | |
25 | 郭正玉, 毕冉, 马征峥, 等. 智能隐身材料在空空导弹结构设计中的应用展望[J]. 航空兵器, 2023, 30(2): 21-30. |
GUO Z Y, BI R, MA Z Z, et al. Application prospect of intelligent stealth materials in air-to-air missile structure design[J]. Aero Weaponry, 2023, 30(2): 21-30 (in Chinese). | |
26 | 陈敏, 张纪元, 唐海龙, 等. 自适应循环发动机总体设计技术探讨[J]. 航空动力学报, 2022, 37(10): 2046-2058. |
CHEN M, ZHANG J Y, TANG H L, et al. Discussion on overall performance design technology of adaptive cycle engine[J]. Journal of Aerospace Power, 2022, 37(10): 2046-2058 (in Chinese). | |
27 | TRIMBLE S. DARPA aims gambit missile project at fourth-gen fighters [EB/OL]. (2022-08)[2023-11-20]. . |
28 | 刘艳鹏, 龚安民, 丁鹏, 等. 基于言语想象的脑机交互关键技术[J]. 生物医学工程学杂志, 2022, 39(3): 596-611. |
LIU Y P, GONG A M, DING P, et al. Key technology of brain-computer interaction based on speech imagery[J]. Journal of Biomedical Engineering, 2022, 39(3): 596-611 (in Chinese). | |
29 | 魏士松. 基于脑-机接口的飞行器虚拟现实模拟驾驶系统研究[D]. 南京: 南京航空航天大学, 2021. |
WEI S S. Research on virtual reality simulation driving system of aircraft based on brain-computer interface[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
30 | 李茜. 2022高超声速技术进展[J]. 航空动力, 2023(1): 15-18. |
LI Q. Progress of hypersonic technology in 2022[J]. Aerospace Power, 2023(1): 15-18 (in Chinese). | |
31 | 陈龙, 宋庆国, 廖孟豪. 国防领域航空颠覆性技术识别[J]. 航空科学技术, 2022, 33(5): 37-43. |
CHEN L, SONG Q G, LIAO M H. Identifying disruptive technologies in military aviation for defense[J]. Aeronautical Science & Technology, 2022, 33(5): 37-43 (in Chinese). | |
32 | 赵鸿燕, 周丽. 国外高功率微波武器发展研究[J]. 航空兵器, 2023, 30(4): 42-48. |
ZHAO H Y, ZHOU L. Research on the development of high-power microwave weapon abroad[J]. Aero Weaponry, 2023, 30(4): 42-48 (in Chinese). | |
33 | 范晋祥, 陈晶华. 美军机载武器的新发展[J]. 航空兵器, 2020, 27(5): 13-22. |
FAN J X, CHEN J H. New development of American airborne weapons[J]. Aero Weaponry, 2020, 27(5): 13-22 (in Chinese). | |
34 | 吴涛涛, 王茜, 武晓龙. 定向能武器在无人化战争中的制胜机理及运用特点[J]. 国防科技, 2022, 43(5): 137-142. |
WU T T, WANG Q, WU X L. Winning mechanism and application characteristics of directed energy weapons in unmanned warfare[J]. National Defense Technology, 2022, 43(5): 137-142 (in Chinese). |
/
〈 |
|
〉 |