电子电气工程与控制

基于EWMA控制图抗差估计的欺骗干扰检测算法

  • 钟伦珑 ,
  • 岳文静 ,
  • 李雪艳
展开
  • 1.中国民航大学 智能信号与图像处理天津市重点实验室,天津 300300
    2.中国民航大学 理学院,天津 300300
E-mail: zlunlong@163.com

收稿日期: 2023-09-27

  修回日期: 2023-10-24

  录用日期: 2023-11-22

  网络出版日期: 2023-12-01

基金资助

国家重点研发计划项目(2020YFB0505603);中国民航大学研究生科研创新项目(2022YJS016)

Spoofing interference detection algorithm based on EWMA control chart and robust estimation

  • Lunlong ZHONG ,
  • Wenjing YUE ,
  • Xueyan LI
Expand
  • 1.Tianjin Key Laboratory for Advanced Signal Processing,Civil Aviation University of China,Tianjin 300300,China
    2.College of Science,Civil Aviation University of China,Tianjin 300300,China
E-mail: zlunlong@163.com

Received date: 2023-09-27

  Revised date: 2023-10-24

  Accepted date: 2023-11-22

  Online published: 2023-12-01

Supported by

The National Key Research and Development Program of China(2020YFB0505603);Research and Innovation Project for Graduate Students at Civil Aviation University of China(2022YJS016)

摘要

诱导式欺骗干扰会使机载接收机偏离真实位置且不易被检测到,对民航飞行安全造成威胁。传统的新息序列检测算法存在欺骗检测延迟、无法及时检测欺骗结束时间的问题。针对这一问题,提出了基于指数加权移动平均(EWMA)控制图抗差估计的欺骗干扰检测算法。该算法将紧组合导航系统输出的新息序列作为EWMA控制图的检测样本,利用历史时刻的统计量和当前时刻的新息加权构造服从高斯分布的检验统计量来检测欺骗干扰,并识别受欺骗卫星。同时,利用抗差估计动态调整卡尔曼滤波的增益矩阵,以减小欺骗干扰对新息序列的影响,并通过改变等价权函数的参数加快算法欺骗检测的速度。仿真结果表明:与传统新息序列检测算法相比,所提算法明显缩短了对微小突变式欺骗干扰和缓变式欺骗干扰的检测时间,且能及时检测到欺骗结束时间。

本文引用格式

钟伦珑 , 岳文静 , 李雪艳 . 基于EWMA控制图抗差估计的欺骗干扰检测算法[J]. 航空学报, 2024 , 45(15) : 329655 -329655 . DOI: 10.7527/S1000-6893.2023.29655

Abstract

The induced spoofing interference makes the airborne receiver deviate from the real position when it is not easy to be detected, which poses a threat to the safety of civil aviation flight. The traditional innovation sequence detection algorithm has the problem of spoofing detection delay and cannot detect the end time of spoofing in time. To solve this problem, a spoofing detection algorithm based on an Exponentially Weighted Moving Average (EWMA) control chart and robust estimation is proposed. The innovation sequence output by the tightly-coupled integrated navigation system is taken as the sample of EWMA control chart. The historical moment statistics and the current signal sequence weighting are employed to construct a test statistic following a Gaussian distribution to detect spoofing interference and identify the spoofed satellite. At the same time, the gain matrix is adjusted dynamically by using the robust estimation to reduce the influence of spoofing on the innovation sequence, and spoofing detection speed is accelerated by changing the parameters of the equivalent weight function. The simulation results show that comparing with the traditional innovation sequence detection algorithm, the proposed algorithm can obviously shorten the detection time of small mutation spoofing and slow change spoofing, and can detect the spoofing end time in time.

参考文献

1 ROTHMAIER F, CHEN Y H, LO S, et al. GNSS spoofing detection through spatial processing[J]. NAVIGATION202168(2): 243-258.
2 JEONG S, LEE J Y. Synthesis algorithm for effective detection of GNSS spoofing attacks[J]. International Journal of Aeronautical and Space Sciences202021(1): 251-264.
3 VOLPE J A. Vulnerability assessment of the transportation infrastructure relying on the global positioning syst[R]. Volpe National Transportation Systems Center, 2001
4 HEGARTY C, ODEH A, SHALLBERG K, et al. Spoofing detection for airborne GNSS equipment[C]∥ Proceedings of the 31st International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2018), 2018: 1350-1368.
5 周彦, 王山亮, 杨威, 等. GNSS欺骗式干扰检测综述[J]. 计算机工程与应用202258(11): 12-22.
  ZHOU Y, WANG S L, YANG W, et al. Overview of GNSS spoofing jamming detection[J]. Computer Engineering and Applications202258(11): 12-22 (in Chinese).
6 MIRALLES D, BORNOT A, ROUQUETTE P, et al. An assessment of GPS spoofing detection via radio power and signal quality monitoring for aviation safety operations[J]. IEEE Intelligent Transportation Systems Magazine202012(3): 136-146.
7 LI J Z, ZHU X W, OUYANG M J, et al. Research on multi-peak detection of small delay spoofing signal[J]. IEEE Access20208: 151777-151787.
8 GU N Z, XING F, YOU Z. GNSS spoofing detection based on coupled visual/inertial/GNSS navigation system[J]. Sensors202121(20): 6769.
9 JEONG S, KIM M, LEE J Y. CUSUM-based GNSS spoofing detection method for users of GNSS augmentation system[J]. International Journal of Aeronautical and Space Sciences202021(2): 513-523.
10 BORIO D. An experimental evaluation of global navigation satellite system/inertial navigation system-verification strategies for vehicular applications[J]. IEEE Intelligent Transportation Systems Magazine202012(3): 25-35.
11 张超, 吕志伟, 张伦东, 等. 基于新息速率抗差估计的INS/GNSS组合导航系统欺骗检测算法[J]. 中国惯性技术学报202129(3): 328-333.
  ZHANG C, LV Z W, ZHANG L D, et al. A spoofing detection algorithm for INS/GNSS integrated navigation system based on innovation rate and robust estimation[J]. Journal of Chinese Inertial Technology202129(3): 328-333 (in Chinese).
12 LIU Y, LI S H, FU Q W, et al. Analysis of Kalman filter innovation-based GNSS spoofing detection method for INS/GNSS integrated navigation system[J]. IEEE Sensors Journal201919(13): 5167-5178.
13 ZHANG C, ZHAO X B, PANG C L, et al. Improved fault detection method based on robust estimation and sliding window test for INS/GNSS integration[J]. Journal of Navigation202073(4): 776-796.
14 钟伦珑, 刘炅坡, 余亮, 等. 基于自适应SPRT的缓变式欺骗干扰检测算法[J]. 信号处理202238(10): 2144-2154.
  ZHONG L L, LIU J P, YU L, et al. Slowly varying spoofing interference detection algorithm based on adaptive SPRT[J]. Journal of Signal Processing202238(10): 2144-2154 (in Chinese).
15 钟伦珑, 刘永玉, 李雪艳. 基于KL散度的紧组合导航欺骗式干扰检测方法[J]. 航空科学技术202233(11): 76-83.
  ZHONG L L, LIU Y Y, LI X Y. Spoofing interference detection method based on KL divergence for tightly-coupled navigation system[J]. Aeronautical Science & Technology202233(11): 76-83 (in Chinese).
16 KE Y, LV Z W, ZHANG C, et al. Tightly coupled GNSS/INS integration spoofing detection algorithm based on innovation rate optimization and robust estimation[J]. IEEE Access202210: 72444-72457.
17 姜颖颖, 潘树国, 叶飞, 等. 基于抗差估计和改进AIME的缓变故障检测方法[J]. 系统工程与电子技术202244(9): 2894-2902.
  JIANG Y Y, PAN S G, YE F, et al. Approach for detection of slowly growing fault based on robust estimation and improved AIME[J]. Systems Engineering and Electronics202244(9): 2894-2902 (in Chinese).
18 ROBERTS S W. Control chart tests based on geometric moving averages[J]. Technometrics200042(1): 97-101.
19 HARROU F, SAIDI A, SUN Y, et al. Monitoring of photovoltaic systems using improved kernel-based learning schemes[J]. IEEE Journal of Photovoltaics202111(3): 806-818.
20 TAGHEZOUIT B, HARROU F, SUN Y, et al. A simple and effective detection strategy using double exponential scheme for photovoltaic systems monitoring[J]. Solar Energy2021214: 337-354.
21 ZHANG L Y, ZHAO H B, SUN C, et al. Enhanced GNSS spoofing detector via multiple-epoch inertial navigation sensor prediction in a tightly-coupled system[J]. IEEE Sensors Journal202222(9): 8633-8647.
22 TANIL C. Detecting GNSS spoofing attacks using INS coupling[M]. Illinois Institute of Technology, 2016.
23 LI Y F, QIN J H, WU C J. A robust adaptive exponentially weighted moving average control chart with a distribution-free design strategy[J]. Computers & Industrial Engineering2023177: 109083.
24 YANG Y, HE H, XU G. Adaptively robust filtering for kinematic geodetic positioning[J]. Journal of Geodesy200175(2): 109-116.
25 喻思琪, 张小红, 郭斐, 等. 卫星导航进近技术进展[J]. 航空学报201940(3): 022200.
  YU S Q, ZHANG X H, GUO F, et al. Recent advances in precision approach based on GNSS[J]. Acta Aeronautica et Astronautica Sinica201940(3): 022200 (in Chinese).
文章导航

/