航空发动机高性能制造专栏

薄壁零件残余应力演化机理及变形控制方法

  • 张仲玺 ,
  • 王帅钦 ,
  • 赵慧娟 ,
  • 张定华 ,
  • 汪龙皓
展开
  • 1.扬州大学 机械工程学院,扬州 225009
    2.西北工业大学 航空发动机高性能制造工业和信息化部重点实验室,西安 710072
E-mail: 008370@yzu.edu.cn

收稿日期: 2023-07-25

  修回日期: 2023-08-17

  录用日期: 2023-10-07

  网络出版日期: 2023-12-01

基金资助

国家自然科学基金(52205501);航空发动机高性能制造工信部重点实验室(西北工业大学)开放课题(HPM-2021-04);扬州大学高层次人才项目(137012319);扬州市-扬州大学市校合作共建创新科技平台项目(YZ2020266)

Residual stresses evolution mechanism of thin⁃walled component and deformation control method

  • Zhongxi ZHANG ,
  • Shuaiqin WANG ,
  • Huijuan ZHAO ,
  • Dinghua ZHANG ,
  • Longhao WANG
Expand
  • 1.School of Mechanical Engineering,Yangzhou University,Yangzhou 225009,China
    2.Key Laboratory of High Performance Manufacturing for Aero Engine,Ministry of Industry and Information Technology,Northwestern Polytechnical University,Xi’an 710072,China
E-mail: 008370@yzu.edu.cn

Received date: 2023-07-25

  Revised date: 2023-08-17

  Accepted date: 2023-10-07

  Online published: 2023-12-01

Supported by

National Natural Science Foundation of China(52205501);Key Laboratory of High Performance Manufacturing for Aero Engine (Northwestern Polytechnical University), Ministry of Industry and Information Technology(HPM-2021-04);The High-level Talent Program of Yangzhou University(137012319);Yangzhou-Yangzhou University Cooperative Innovation Technology Platform Support Project(YZ2020266)

摘要

变形是难加工材料薄壁零件切削加工所面临的最主要挑战之一,整个工艺过程,零件残余应力随材料去除不断演化,导致最终零件的精度很难保证。针对薄壁零件切削加工变形问题,提出一种考虑工艺过程残余应力演化的薄壁零件变形控制方法。首先,通过微元切片法建立了薄壁零件工艺过程简化模型,分析了零件夹紧点的载荷分布,建立了零件夹紧点等效载荷平衡方程;并基于变形叠加原理和微小变形理论,建立了零件夹紧点变形几何平衡方程;分析了工艺过程不同时刻的零件载荷分布情况,揭示了薄壁零件残余应力及其等效载荷演化机理。在此基础上,建立了工序间零件变形精确调控模型,实现了薄壁零件残余应力演化与最终变形控制。最后,设计了3组切削加工实验,分别采用不同加工工艺加工相同的薄板零件,实验结果表明,采用所提出的变形控制方法最大可降低加工变形82.2%。

本文引用格式

张仲玺 , 王帅钦 , 赵慧娟 , 张定华 , 汪龙皓 . 薄壁零件残余应力演化机理及变形控制方法[J]. 航空学报, 2024 , 45(13) : 629365 -629365 . DOI: 10.7527/S1000-6893.2023.29365

Abstract

Deformation is one of the most important challenges in the machining of the thin-walled component, especially for the complicated thin-walled component with difficult-to-machining material. The internal stress and machining induced residual stress are evolved during the machining process, causing the poor machining accuracy of the final component. To solve this problem, a deformation control method based on the evolution mechanism of residual stress is proposed. Firstly, the simplified model of the component is obtained through the slice method. The equilibrium equation for clamping point is established by analyzing the loads distribution. The geometric equilibrium equation is then obtained according to the deformation superposition principle and micro deformation theory. The distribution of loads at different instants of machining process is analyzed, and the evolution mechanism of the residual stresses and the equivalent loads is revealed. Secondly, a mathematical model is established to regulate the in-process deformation of the thin-walled component. As the result, the evolution of the residual stresses and the deformation of the final component is controlled. Finally, 3 deformation validation experiments are carried out to process the same thin plates, and the deformation of the thin plates are compared. The experimental results indicate that the maximum deformation can be reduced by 82.2%.

参考文献

1 LUO M, LUO H, ZHANG D H, et al. Improving tool life in multi-axis milling of Ni-based superalloy with ball-end cutter based on the active cutting edge shift strategy[J]. Journal of Materials Processing Technology2018252: 105-115.
2 MALI R A, GUPTA T V K, RAMKUMAR J. A comprehensive review of free-form surface milling-Advances over a decade[J]. Journal of Manufacturing Processes202162: 132-167.
3 张吉银, 姚倡锋, 谭靓, 等. 喷丸强化残余应力对疲劳性能和变形控制影响研究进展[J]. 机械工程学报202359(6): 46-60.
  ZHANG J Y, YAO C F, TAN L, et al. Research progress of the effect of shot peening residual stress on fatigue performance and deformation control[J]. Journal of Mechanical Engineering202359(6): 46-60 (in Chinese).
4 岳彩旭, 张俊涛, 刘献礼, 等. 薄壁件铣削过程加工变形研究进展[J]. 航空学报202243(4): 525164.
  YUE C X, ZHANG J T, LIU X L, et al. Research progress on machining deformation of thin-walled parts in milling process[J]. Acta Aeronautica et Astronautica Sinica202243(4): 525164 (in Chinese).
5 ZHANG Z, LI L, YANG Y, et al. Machining distortion minimization for the manufacturing of aeronautical structure[J]. International Journal of Advanced Manufacturing Technology201473(9-12): 1765-1773.
6 LUO M, LUO H, AXINTE D, et al. A wireless instrumented milling cutter system with embedded PVDF sensors[J]. Mechanical Systems and Signal Processing2018110: 556-568.
7 LIU C Q, LI Y G, HAO X Z. An adaptive machining approach based on in-process inspection of interim machining states for large-scaled and thin-walled complex parts[J]. International Journal of Advanced Manufacturing Technology201790(9-12): 3119-3128.
8 XU J T, XU L K, LI Y F, et al. Shape-adaptive CNC milling for complex contours on deformed thin-walled revolution surface parts[J]. Journal of Manufacturing Processes202059: 760-771.
9 HAO X Z, LI Y G, DENG T C, et al. Tool path transplantation method for adaptive machining of large-sized and thin-walled free form surface parts based on error distribution[J]. Robotics and Computer-Integrated Manufacturing201956: 222-232.
10 CERUTTI X, MOCELLIN K. Influence of the machining sequence on the residual stress redistribution and machining quality: Analysis and improvement using numerical simulations[J]. International Journal of Advanced Manufacturing Technology201683(1-4): 489-503.
11 HAO X Z, LI Y G, NI Y, et al. A collaborative optimization method of machining sequence for deformation control of double-sided structural parts[J]. International Journal of Advanced Manufacturing Technology2020110(11-12): 2941-2953.
12 TOUBHANS B, VIPREY F, FROMENTIN G, et al. Study of phenomena responsible for part distortions when turning thin Inconel 718 workpieces[J]. Journal of Manufacturing Processes202161: 46-55.
13 LI B Z, JIANG X H, YANG J G, et al. Effects of depth of cut on the redistribution of residual stress and distortion during the milling of thin-walled part[J]. Journal of Materials Processing Technology2015216: 223-233.
14 HUANG K, YANG W, YE X. Adjustment of machining-induced residual stress based on parameter inversion[J]. International Journal of Mechanical Sciences2018135: 43-52.
15 吴宝海, 郑志阳, 张阳, 等. 面向薄壁零件加工变形与振动控制的智能装夹技术研究进展[J]. 机械工程学报202157(17): 21-34.
  WU B H, ZHENG Z Y, ZHANG Y, et al. Intelligent clamping technology for machining deformation and vibration control of thin-wall parts: a review of recent progress[J]. Journal of Mechanical Engineering202157(17): 21-34 (in Chinese).
16 郑志阳, 张阳, 张钊, 等. 基于GA?SVR的薄壁叶片辅助支撑布局优化方法[J]. 航空学报202344(4): 426805.
  ZHENG Z Y, ZHANG Y, ZHANG Z, et al. Layout optimization of auxiliary support for thin-walled blade based on GA-SVR[J]. Acta Aeronautica et Astronautica Sinica202344(4): 426805 (in Chinese).
17 XING Y F. Fixture layout design of sheet metal parts based on global optimization algorithms[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017139(10): 1-10.
18 RAMACHANDRAN T, SURENDARNATH S, DHARMALINGAM R. Engine-bracket drilling fixture layout optimization for minimizing the workpiece deformation[J]. Engineering Computations (Swansea, Wales)202038(5): 1978-2002.
19 YU J H, CHEN Z T, JIANG Z P. A control process for machining distortion by using an adaptive dual-sphere fixture[J]. International Journal of Advanced Manufacturing Technology201612: 3463-3470.
20 HAO Q L, YANG Q. A self-adaptive auxiliary fixture for deformation control in blade machining[J]. International Journal of Advanced Manufacturing Technology2020111(5-6): 1415-1423.
21 GONZALO O, SEARA J M, GURUCETA E, et al. A method to minimize the workpiece deformation using a concept of intelligent fixture[J]. Robotics and Computer-Integrated Manufacturing201748: 209-218.
22 HAO X Z, LI Y G, CHEN G X, et al. 6+X locating principle based on dynamic mass centers of structural parts machined by responsive fixtures[J]. International Journal of Machine Tools and Manufacture2018125: 112-122.
23 CHATELAIN J F, LALONDE J F, TAHAN A S. Effect of residual stresses embedded within workpieces on the distortion of parts after machining[J]. International Journal of Mechanics20126(1): 43-51.
24 HAO X Z, LI Y G, LI M Q, et al. A part deformation control method via active pre-deformation based on online monitoring data[J]. International Journal of Advanced Manufacturing Technology2019104(5-8): 2681-2692.
25 ZHANG Z X, LUO M, TANG K, et al. A new in-processes active control method for reducing the residual stresses induced deformation of thin-walled parts[J]. Journal of Manufacturing Processes202059: 316-325.
26 GAMEROS A, LOWTH S, AXINTE D, et al. State-of-the-art in fixture systems for the manufacture and assembly of rigid components: A review[J] International Journal of Machine Tools and Manufacture2017123: 1-21.
27 ZHANG Z X, ZHANG Z, ZHANG D H, et al. Milling distortion prediction for thin-walled component based on the average MIRS in specimen machining[J]. International Journal of Advanced Manufacturing Technology2020111(11-12): 3379-3392.
文章导航

/