高速直升机机身干扰对推力桨气动与噪声源特性的影响
收稿日期: 2023-06-08
修回日期: 2023-07-03
录用日期: 2023-07-29
网络出版日期: 2023-12-01
基金资助
国家自然科学基金(12032012);直升机动力学全国重点实验室基金(61422202103)
Interferences of high-speed helicopter fuselage on aerodynamic and aeroacoustic source characteristics of propeller
Received date: 2023-06-08
Revised date: 2023-07-03
Accepted date: 2023-07-29
Online published: 2023-12-01
Supported by
National Natural Science Foundation of China(12032012);National Key Laboratory Foundation of China(61422202103)
研究高速直升机前飞时机身/后置推力桨的气动干扰对其气动与噪声源特性的影响。构建了一套适用于机身/推力桨流场模拟的高鲁棒性网格系统,贴体网格采用机身非结构/桨叶结构的混合网格,各贴体网格分别与背景网格建立嵌套关系,提出了网格外边界自适应实体物面的边界识别方法以规避贴体网格计算域与实体的重合问题。基于URANS(Unsteady Reynolds Averaged Navier-Stockes)方程构建了一套高速直升机机身/推力桨干扰流场的模拟方法,并基于FW-H(Ffowcs Williams and Hawkings)方程进一步建立了机身/推力桨噪声预估方法。通过与ROBIN机身/旋翼干扰试验数据、AH-1G旋翼噪声试验数据进行对比,验证了分析方法的有效性。开展了高速飞行状态下机身/推力桨干扰流场的高精度数值模拟,重点分析了机身/推力桨流场的干扰机制,综合对比了有/无机身干扰的推力桨气动噪声源特性。结果表明:在机身干扰下,推力桨整体推力会出现小幅度的波动,波动幅度约5.34%。与孤立推力桨比较,受干扰的推力桨在中/高桨盘夹角方向上的噪声声压级(SPL)大幅增大,且增大幅值与前进比正相关。此外,机身表面压力的波动会诱发载荷噪声,进一步改变了总噪声的频域特性。
孙大智 , 陈希 , 鲍为成 , 卞威 , 招启军 . 高速直升机机身干扰对推力桨气动与噪声源特性的影响[J]. 航空学报, 2024 , 45(9) : 529142 -529142 . DOI: 10.7527/S1000-6893.2023.29142
To investigate the influences of interference between the fuselage/propeller on the aerodynamic and aeroacoustic source characteristics in high-speed, firstly, a highly-robust embedded grid method was established in which hybrid grids of fuselage non-structure/propeller structure were adopted. An outer boundary identification method was proposed by adapting the outer boundary to the solid object so as to circumvent the space overlap between the grid domain and the other solid object. Then the Computational Fluid Dynamics (CFD) method based on the Unsteady Reynolds Averaged Navier-Stockes (URANS) equations was established for the simulation of helicopter fuselage/propeller flowfield. Furthermore, the methods based on the Ffowcs Williams and Hawkings (FW-H) equations were applied for fuselage and propeller noise prediction. The effectiveness of the developed method was verified by comparing the simulation results with the results of the NASA ROBIN/rotor experiment and the AH-1G noise experiment. Finally, the flowfield of the fuselage/propeller was simulated for the analysis on the interference mechanisms and aeroacoustics characteristics, and some meaningful conclusions were obtained. Under the interference of the fuselage, a fluctuation of about 5.34% occurred on the propeller thrust while the fluctuation of the single blade thrust was more significant. The Sound Pressure Level (SPL) of the propeller under interferences increased significantly (compared to the isolated propeller). The increased values were positively correlated with the advance ratio. In addition, the frequency domain characteristics of the total noise were altered due to the loading noise induced by the fluctuation of fuselage surface pressure.
1 | 吴希明, 牟晓伟. 直升机关键技术及未来发展与设想[J]. 空气动力学学报, 2021, 39(3): 1-10. |
WU X M, MU X W. A perspective of the future development of key helicopter technologies[J]. Acta Aerodynamica Sinica, 2021, 39(3): 1-10 (in Chinese). | |
2 | RUDDELL A J. Advancing blade concept (ABC?) development[J]. Journal of the American Helicopter Society, 1977, 22(1): 13-23. |
3 | DEROSA S, EADIE W, ELLER E. S-97TM adaptive survivability[C]∥ 69th Annual Forum of the American Helicopter Society. Rockville: American Helicopter Society, 2013. |
4 | 邓景辉. 高速直升机前行桨叶概念旋翼技术[J]. 航空科学技术, 2012, 23(3): 9-14. |
DENG J H. The ABC rotor technology for high speed helicopter[J]. Aeronautical Science & Technology, 2012, 23(3): 9-14 (in Chinese). | |
5 | 陈全龙, 韩景龙, 员海玮. 前行桨叶概念旋翼动力学分析方法[J]. 航空学报, 2014, 35(9): 2451-2460. |
CHEN Q L, HAN J L, YUN H W. Analytical method for advancing blade concept rotor dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2451-2460 (in Chinese). | |
6 | STOKKERMANS T, VELDHUIS L, SOEMARWOTO B, et al. Breakdown of aerodynamic interactions for the lateral rotors on a compound helicopter[J]. Aerospace Science and Technology, 2020, 101: 105845. |
7 | BOISARD R. Numerical analysis of rotor/propeller aerodynamic interactions on a high-speed compound helicopter[J]. Journal of the American Helicopter Society, 2022, 67(1): 1-15. |
8 | LORBER P, LAW G, O''NEILL J, et.al. Overview of S-97 RAIDER scale model tests[C]∥ 72nd Annual Forum of the American Helicopter Society. Rockville: American Helicopter Society, 2016:143. |
9 | BOWLES P, SIKORSKY A A L M C, MATALANIS C, et al. Full-configuration CFD analysis of the S-97 RAIDER[C]∥ Proceedings of the Vertical Flight Society 75th Annual Forum. Fairfax: The Vertical Flight Society, 2019: 14512. |
10 | FREY F, THIEMEIER J, ?HRLE C, et al. Aerodynamic interactions on airbus helicopters’ compound helicopter RACER in cruise flight[J]. Journal of the American Helicopter Society, 2020, 65(4): 1-14. |
11 | THIEMEIER J, ?HRLE C, FREY F, et al. Aerodynamics and flight mechanics analysis of Airbus Helicopters’ compound helicopter RACER in hover under crosswind conditions[J]. CEAS Aeronautical Journal, 2020, 11(1): 49-66. |
12 | BLACHA M, FINK A. “clean sky 2”: Exploring new rotorcraft high speed configurations[C]∥ 43rd European Rotorcraft Forum. Milan:European Rotorcraft Forum, 2017: 593. |
13 | 陈荣钱, 王旭, 尤延铖. 短舱对螺旋桨滑流影响的IDDES数值模拟[J]. 航空学报, 2016, 37(6): 1851-1860. |
CHEN R Q, WANG X, YOU Y C. Numerical simulation of nacelle’s effects on propeller slipstream based on IDDES model[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1851-1860 (in Chinese). | |
14 | 邓磊, 段卓毅, 钱瑞战, 等. 螺旋桨滑流对短舱/机翼构型尾迹流场的影响[J]. 航空学报, 2019, 40(5): 122434. |
DENG L, DUAN Z Y, QIAN R Z, et al. Effect of propeller slipstream on wake field of a nacelle/wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122434 (in Chinese). | |
15 | HU Z Y, XU G H, SHI Y J. A robust overset assembly method for multiple overlapping bodies[J]. International Journal for Numerical Methods in Fluids, 2021, 93(3): 653-682. |
16 | 乔宇航, 马东立, 李陟. 螺旋桨/机翼相互干扰的非定常数值模拟[J]. 航空动力学报, 2015, 30(6): 1366-1373. |
QIAO Y H, MA D L, LI Z. Unsteady numerical simulation of propeller/wing interaction[J]. Journal of Aerospace Power, 2015, 30(6): 1366-1373 (in Chinese). | |
17 | ZOU D Y, BONFIGLIOLI A, PACIORRI R, et al. An embedded shock-fitting technique on unstructured dynamic grids[J]. Computers & Fluids, 2021, 218: 104847. |
18 | ?HRLE C, FREY F, THIEMEIER J, et al. Coupled and trimmed aerodynamic and aeroacoustic simulations for airbus helicopters’ compound helicopter RACER[J]. Journal of the American Helicopter Society, 2019, 64(3): 1-14. |
19 | CHIRICO G, BARAKOS G N, BOWN N. Propeller installation effects on turboprop aircraft acoustics[J]. Journal of Sound and Vibration, 2018, 424: 238-262. |
20 | MYERS M K, HAUSMANN J S. Computation of acoustic scattering from a moving rigid surface[J]. The Journal of the Acoustical Society of America, 1992, 91(5): 2594-2605. |
21 | 樊枫, 曹亚雄, 江露生, 等. 直升机噪声声散射特性计算方法研究[J]. 西北工业大学学报, 2020, 38(6): 1275-1283. |
FAN F, CAO Y X, JIANG L S, et al. Research on calculation method for acoustic scattering of helicopter noise[J]. Journal of Northwestern Polytechnical University, 2020, 38(6): 1275-1283 (in Chinese). | |
22 | DI FRANCESCANTONIO P. A new boundary integral formulation for the prediction of sound radiation[J]. Journal of Sound and Vibration, 1997, 202(4): 491-509. |
23 | CHEN S Y, ZHAO Q J, MA Y Y. An adaptive integration surface for predicting transonic rotor noise in hovering and forward flights[J]. Chinese Journal of Aeronautics, 2019, 32(9): 2047-2058. |
24 | CHEN X, ZHANG K, ZHAO Q J, et al. Numerical analysis of rotor aeroacoustic characteristics during collective pitch aperiodic variation in hover[J]. Aerospace Science and Technology, 2022, 124: 107411. |
25 | MEAKIN R. A new method for establishing intergrid communication among systems of overset grids[C]∥ 10th Computational Fluid Dynamics Conference. Reston: AIAA, 1991: 1586. |
26 | LI P, ZHAO Q J, ZHU Q X. CFD calculations on the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1593-1605. |
27 | ZHAO Q J, ZHAO G Q, WANG B, et al. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor[J]. Chinese Journal of Aeronautics, 2018, 31(2): 214-224. |
28 | FFOWCS WILLIAMS J E, HAWKINGS D L. Theory relating to the noise of rotating machinery[J]. Journal of Sound Vibration, 1969, 10(1): 10-21. |
29 | MINECK R E, GORTON S A. Steady and periodic pressure measurements on a generic helicopter fuselage model in the presence of a rotor[R]. Washington, D.C.: NASA Technical Memorandum, 2000. |
30 | STRAWN R C, DUQUE E P N, AHMAD J. Rotorcraft aeroacoustics computations with overset-grid CFD methods[J]. Journal of the American Helicopter Society, 1999, 44(2): 132-140. |
31 | HO J C, YEO H. Analytical study of an isolated coaxial rotor system with lift offset[J]. Aerospace Science and Technology, 2020, 100: 105818. |
32 | JIA Z Q, LEE S. Impulsive loading noise of a lift-offset coaxial rotor in high-speed forward flight[J]. AIAA Journal, 2019, 58(2): 687-701. |
33 | HAYAMI K, SUGAWARA H, YUMINO T, et al. CFD analysis on the performance of a coaxial rotor with lift offset at high advance ratios[J]. Aerospace Science and Technology, 2023, 135: 108194. |
/
〈 |
|
〉 |