论文

气体引射效应对壁面热流和摩擦阻力的影响

  • 樊宇翔 ,
  • 赵瑞 ,
  • 左政玄 ,
  • 杨光 ,
  • 李宇
展开
  • 1.北京理工大学 宇航学院,北京 100081
    2.北京理工大学重庆创新中心,重庆 401135
    3.中国运载火箭技术研究院 空间物理重点实验室,北京 100076
.E-mail: lymichael8@sohu.com

收稿日期: 2023-02-21

  修回日期: 2023-04-21

  录用日期: 2023-06-25

  网络出版日期: 2023-10-07

Gas⁃injection effects on wall heat flux and skin⁃friction of vehicles

  • Yuxiang FAN ,
  • Rui ZHAO ,
  • Zhengxuan ZUO ,
  • Guang YANG ,
  • Yu LI
Expand
  • 1.School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
    2.Beijing Institute of Technology Chongqing Innovation Center,Chongqing 401135,China
    3.Science and Technology on Space Physics Laboratory,China Academy of Launch Vehicle Technology,Beijing 100076,China

Received date: 2023-02-21

  Revised date: 2023-04-21

  Accepted date: 2023-06-25

  Online published: 2023-10-07

摘要

烧蚀热防护材料在高热负荷下会发生热解,产生的热解气体进入到边界层中会起到降热减阻效应。首先建立壁面质量引射边界条件,验证了该边界的准确性,并针对高超声速钝楔模型,研究了不同攻角、不同引射气体对壁面热流和摩擦阻力的影响机理和规律。计算结果表明,由于壁面质量引射的存在,迎风面激波脱体距离增加,高温区域远离壁面,壁面热流和摩擦阻力均降低。同时相比于空气引射,同等质量流率下热解气体引射导致的激波脱体距离更远,壁面附近的温度梯度、黏性系数和切向速度梯度也减小更多,因此降热减阻效果也更为显著,并且随着攻角的减小,迎风面质量引射的降热减阻效率有所增大。此外,引射质量流率的增加提高了降热减阻效率,空气引射的质量流率为热解气体的2倍时,两者的降热减阻效率才近乎相等。

本文引用格式

樊宇翔 , 赵瑞 , 左政玄 , 杨光 , 李宇 . 气体引射效应对壁面热流和摩擦阻力的影响[J]. 航空学报, 2023 , 44(21) : 528587 -528587 . DOI: 10.7527/S1000-6893.2023.28587

Abstract

The ablative thermal protection material will be pyrolyzed under high thermal load. The produced pyrolysis gas is injected into the boundary layer, reducing heat flux and skin-friction drastically. Firstly, the boundary condition of wall mass injection is established, and the accuracy of this boundary is verified. After that, for the hypersonic blunt wedge model, the mechanisms of the influence of different angles of attack and different gases on the wall heat flux and skin-friction are studied. The numerical results show that due to the existence of wall mass injection, the distance of the windward detached shock from the wall increases, and the high-temperature region is pushed away from the wall, reducing the wall heat flux and skin-friction. Compared with air injection, the distance of the detached shock due to pyrolysis gas at the same mass flow rate is farther from the wall, and the temperature gradient, viscosity coefficient, and velocity gradient also decrease obviously in the boundary layer. Therefore, the reduction of heat flux and skin-friction by pyrolysis gas injection is more significant, and the efficiency of heat flux and skin-friction reduction increases with the decrease of the attack angle. Comparison of the results at different mass flow rates finds that the increase in air injection mass flow rate improves the efficiency of heat flux and skin-friction reduction, and the efficiencies of both is nearly equal when the air injection mass flow rate is twice that of the pyrolysis gas.

参考文献

1 赵瑾, 孙向春, 张俊, 等. 热防护材料气固界面传热传质问题研究进展[J]. 航空学报202243(10): 527577.
  ZHAO J, SUN X C, ZHANG J, et al. Research advances on heat and mass transfer coupling effect at gas-solid interface for thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527577 (in Chinese).
2 叶友达. 高超声速空气动力学研究进展与趋势[J]. 科学通报201560(12): 1095-1103.
  YE Y D. Advances and prospects in hypersonic aerodynamics[J]. Chinese Science Bulletin201560(12): 1095-1103 (in Chinese).
3 李海燕, 唐志共, 杨彦广, 等. 高超声速飞行器高温流场数值模拟面临的问题[J]. 航空学报201536(1): 176-191.
  LI H Y, TANG Z G, YANG Y G, et al. Problems of numerical simulation of high-temperature gas flow fields for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica201536(1): 176-191 (in Chinese).
4 董维中, 高铁锁, 丁明松, 等. 高超声速飞行器表面温度分布与气动热耦合数值研究[J]. 航空学报201536(1): 311-324.
  DONG W Z, GAO T S, DING M S, et al. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica201536(1): 311-324 (in Chinese).
5 LAUB B, VENKATAPATHY E. Thermal protection system technology and facility needs for demanding future planetary missions[C]∥ International Workshop on Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science. Paris: European Space Agency, 2004: 239-247.
6 王筠, 杨云华, 冯志海. 深空探测用热防护材料的现状及发展方向[J]. 宇航材料工艺201343(5): 1-10.
  WANG Y, YANG Y H, FENG Z H. Current status and further trend of thermal protection materials for deep space exploration[J]. Aerospace Materials & Technology201343(5): 1-10 (in Chinese).
7 JOHNSON S M. Thermal protection materials: Development, characterization and evaluation: ARC-E-DAA-TN5732[R]. Washington, D.C.: NASA, 2012.
8 REYNIER P. Convective blockage during Earth re-entry: A review[C]∥ 40th AIAA Thermophysics Conference. Reston: AIAA, 2008.
9 REYNIER P. Survey of convective blockage for planetary entries[J]. Acta Astronautica201383: 175-195.
10 BREWER R A, BRANT D N. Thermal protection system for the Galileo mission atmospheric entry probe: AIAA-1980-0358[R]. Reston: AIAA, 1980.
11 AHN H K, PARK C, SAWADA K. Dynamics of pyrolysis gas in charring materials ablation: AIAA-1998-0165[R]. Reston: AIAA, 1998.
12 OLYNICK D, CHEN Y K, TAUBER M E. Aerothermodynamics of the stardust sample return capsule[J]. Journal of Spacecraft and Rockets199936(3): 442-462.
13 MARVIN J G, AKIN C M. Combined effects of mass addition and nose bluntness on boundary-layer transition[J]. AIAA Journal19708(5): 857-863.
14 DEMETRIADES A, LADERMAN A J, VON SEGGERN L, et al. Effect of mass addition on the boundary layer of a hemisphere at Mach 6[J]. Journal of Spacecraft and Rockets197613(8): 508-509.
15 SCHNEIDER S P. Hypersonic boundary-layer transition with ablation and blowing[J]. Journal of Spacecraft and Rockets201047(2): 225-237.
16 周伟江, 姜贵庆. 高超声速流中局部构件上质量引射的热防护特性研究[J]. 航空学报199920(3): 193-196.
  ZHOU W J, JIANG G Q. Study of heating protection features by mass injection over the local structure in a hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica199920(3): 193-196 (in Chinese).
17 肖雨,石义雷,粟斯尧. 质量引射对高超声速边界层影响研究[C]∥ 第十九届中国空气动力学物理气体动力学学术交流会.2019:124-126.
  XIAO Y, SHI Y L, SU S Y. Study of mass injection effects on hypersonic boundary layer[C]∥ 19th China Aerodynamics Physics Aerodynamics Academic Exchange Conference.2019:142-126 (in Chinese).
18 沈斌贤, 曾磊, 刘骁, 等. 高超声速飞行器主动质量引射热防护技术研究进展[J]. 空气动力学学报202240(6): 1-13.
  SHEN B X, ZENG L, LIU X, et al. Research progress of thermal protection technique by activemass injection for hypersonic vehicle[J]. Acta Aerodynamica Sinica202240(6): 1-13 (in Chinese).
19 YOU Q, YANG X F, ZENG L, et al. Coupled heat transfer characteristics on chemically reacting interface of high-speed aircraft considering wall injection[C]∥ 32nd Congress of the International Council of the Aeronautical Sciences. 2021.
20 GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA-RP-1232[R]. Washington, D.C.: NASA, 1990.
21 PARK C. Review of chemical-kinetic problems of future NASA missions, I: Earth entries[J]. Journal of Thermophysics and Heat Transfer19937(3): 385-398.
22 PARK C, HOWE J T, JAFFE R L, et al. Review of chemical-kinetic problems of future NASA missions, II: Mars entries[J]. Journal of Thermophysics and Heat Transfer19948(1): 9-23.
23 BAULCH D L, COBOS C J, COX R A, et al. Evaluated kinetic data for combustion modelling[J]. Journal of Physical and Chemical Reference Data199221(3): 411.
24 FUJITA K, YAMADAT T, ISHII N. Impacts of ablation gas kinetics on hyperbolic entry radiative heating[C]∥ 44th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2006: 14357-14378.
25 COHEN N, WESTBERG K R. Chemical kinetic data sheets for high-temperature chemical reactions[J]. Journal of Physical and Chemical Reference Data198312(3): 531-590.
26 WARNATZ J. Rate coefficients in the C/H/O system[M]∥GARDINER W C, Jr. Combustion Chemistry. New York: Springer, 1984: 197-360.
27 COHEN N, WESTBERG K R. Evaluation and compilation of chemical kinetic data[J]. The Journal of Physical Chemistry197983(1): 46-50.
28 GNOFFO P A. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium[M]. Washington, D.C.: NASA, Office of Management, Scientific and Technical Information Division, 1989.
29 SARMA G S R. Physico-chemical modelling in hypersonic flow simulation[J]. Progress in Aerospace Sciences200036(3/4): 281-349.
30 MITCHELTREE R A, GNOFFO P A. Wake flow about a MESUR Mars entry vehicle: AIAA-1994-1958[R]. Reston: AIAA, 1994.
31 THOMPSON R A, GNOFFO P A. Implementation of a blowing boundary condition in the LAURA code: AIAA-2008-1243[R]. Reston: AIAA, 2008.
32 MARTIN A, BOYD I D. Modeling of heat transfer attenuation by ablative gases during the stardust reentry[J]. Journal of Thermophysics and Heat Transfer201529(3): 450-466.
文章导航

/