载荷数据和对日导引律修正星敏安装矩阵算法
收稿日期: 2023-08-31
修回日期: 2023-11-02
录用日期: 2023-11-13
网络出版日期: 2023-11-22
基金资助
国家自然科学基金(U1731241)
Modification algorithm for installation matrix of star tracker by payloads data and sun pointing guidance
Received date: 2023-08-31
Revised date: 2023-11-02
Accepted date: 2023-11-13
Online published: 2023-11-22
Supported by
National Natural Science Foundation of China(U1731241)
先进天基太阳天文台卫星(ASO-S)主要任务是对日观测。为实现高精度高稳定度需求,卫星采用星敏感器(STR)和光纤陀螺的扩展卡尔曼滤波算法进行姿态确定。在轨因受到地气光影响,卫星装配的3台STR交替有效。为了减弱装配测量偏差引起定姿使用星敏切换时的姿态指向控制误差,需统一3台STR的测量基准。同时,修正STR相对载荷测量基准的偏差,提高卫星对日指向控制精度。ASO-S载荷之一的白光太阳望远镜(WST)入轨后即可开机测量太阳全日面图像,经图像处理后得到太阳中心二维指向偏差角。同时,另一载荷太阳导行镜(SGT)可直接测量太阳中心二维指向偏差角。结合载荷对日观测数据和卫星对日指向控制导引律,提出一种星载STR安装矩阵在轨修正算法。通过仿真验证了STR安装矩阵修正算法的正确性,与仿真中星敏模型的安装矩阵相比,使用10幅WST全日面图像计算STR安装矩阵的精度优于3″;利用300 s SGT数据计算STR安装矩阵的精度优于0.2″。以ASO-S在轨遥测数据进行算法验证,卫星对日指向控制偏差与SGT测量太阳中心偏差角间的偏差值优于15″,将STR相对SGT的装配测量精度提高了1.5倍。
陈炳龙 , 王磊 , 刘帮 , 周衡 . 载荷数据和对日导引律修正星敏安装矩阵算法[J]. 航空学报, 2024 , 45(13) : 329502 -329502 . DOI: 10.7527/S1000-6893.2023.29502
The mission of the Advanced Space-based Solar Observatory Satellite (ASO-S) is to observe the Sun activity. To satisfy the requirements for high precision and high stability, the extended Kalman filtering algorithm based on measurements of Star Tracker (STR) and fiber optic gyro is used for attitude determination. The reflected light coming from atmosphere of earth can affect the STR, so 3 on-board STRs will be available alternately. Because of assembling error of STRs, there will be a large attitude control error when the STR used for attitude determination changes. To reduce this control error, unification of the measurements obtained from the 3 STRs is necessary. Meanwhile, the assembling error of STR with respect to the measuring basis of payload should be calibrated for higher precision of attitude control. One of the main payloads on-board ASO-S named the White-light Solar Telescope (WST) can get full solar images shortly after entering the orbit. Then, the two-dimensional heliocentric deviation angle can be got by solar image processing. At the same time, another payload named Sun Guide Telescope (SGT) on ASO-S can directly measure the two-dimensional deviation angle between its detector center and the solar center. An on-orbit modification algorithm for installation matrix of STR is proposed by using solar observation data of payload and the guidance law of the satellite for sun pointing control. Mathematical simulation is used to validate the correctness of the proposed algorithm. In comparison with the simulation model of STR, the precision of installation matrix calculated by 10 full solar images of WST is less than 3″, and the result calculated by 300 s measurements data from SGT is less than 0.2″. The on-orbit telemetry data of ASO-S are used to validate this algorithm. The deviation error between the sun pointing control error and deviation angles measuring from SGT is less than 15″, so the assembling precision between STR and SGT is improved 1.5 times.
1 | GAN W Q, ZHU C, CHEN B, et al. China’s first comprehensive space solar observatory[J]. Chinese Astronomy and Astrophysics, 2023, 47(2): 441-445. |
2 | GAN W Q, FENG L, SU Y. A Chinese solar observatory in space[J]. Nature Astronomy, 2022, 6: 165. |
3 | GAN W Q. Progress report on ASO-S[J]. Chinese Journal of Space Science, 2022, 42(4): 565. |
4 | POLAND D, FINK D, EKINCI F M, et al. The solar dynamics observatory after three years in orbit[C]∥ 2013 IEEE Aerospace Conference. Piscataway: IEEE Press, 2013: 1-9. |
5 | OHKAMI Y, TANIWAKI S. Overview of the Attitude and Orbit Control Systems (AOCS) developed for NASDA/JAXA engineering test and applications satellites[J]. IFAC Proceedings Volumes, 2004, 37(6): 197-202. |
6 | BENZENIAR H. In-orbit results from the attitude determination and control system of ALSAT-2B[J]. The Aeronautical Journal, 2021, 125(1293): 2039-2064. |
7 | WU J P, HAO Y C. Research on star point cluster location method[C]∥ 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE). Piscataway: IEEE Press, 2022: 79-84. |
8 | WU L, XU Q, HAN C, et al. An on-orbit calibration method of star sensor based on angular distance subtraction[J]. IEEE Photonics Journal, 2021, 13(3): 6800213. |
9 | 李元鹏, 郭疆. 星敏感器支架的指向性标定及校正[J]. 红外与激光工程, 2022, 51(9): 20210875. |
LI Y P, GUO J. Directivity calibration and correction of bracket for star sensor[J]. Infrared and Laser Engineering, 2022, 51(9): 20210875 (in Chinese). | |
10 | 程会艳, 郑然, 武延鹏, 等. 一种提高多探头星敏感器姿态测量精度的方法[J]. 空间控制技术与应用, 2022, 48(4): 78-85. |
CHENG H Y, ZHENG R, WU Y P, et al. A method to improve attitude measurement accuracy with multi-FOV star sensor[J]. Aerospace Control and Application, 2022, 48(4): 78-85 (in Chinese). | |
11 | ZHANG R, CHEN H, LI G Y, et al. Preliminary research on data abnormality diagnosis methods of spacecraft precision measurement[J]. Journal of Engineering Research and Applications, 2015, 5(2): 9-15. |
12 | ZHAO S F, WANG X S, TAN W F, et al. Error coupling analysis of the laboratory calibration method for a star tracker[J]. Applied Optics, 2021, 60(8): 2372-2379. |
13 | WI J, BAECK K, YOON H. Modeling and filtering colored noise of a star tracker[J]. The Journal of the Astronautical Sciences, 2023, 70(2): 8. |
14 | YOON H, BAECK K, WI J. Star tracker geometric calibration through full-state estimation including attitude[J]. International Journal of Aeronautical and Space Sciences, 2022, 23(1): 180-191. |
15 | LIU H, WEI X G, LI J, et al. A star identification algorithm based on simplest general subgraph[J]. Acta Astronautica, 2021, 183: 11-22. |
16 | CHANDRAN K P V, MANJAREKAR N S, SINGRU P M. Visual magnitude based star identification initiation routine for APS star trackers[J]. IFAC-PapersOnLine, 2022, 55(1): 180-185. |
17 | ZAPEVALIN P R, NOVOSELOV A, ZHAROV V E. Artificial neural network for star tracker centroid computation[J]. Advances in Space Research, 2023, 71(9): 3917-3925. |
18 | CHEN X D, XING F, YOU Z, et al. On-orbit high-accuracy geometric calibration for remote sensing camera based on star sources observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5608211. |
19 | WANG Y L, WANG M, ZHU Y. On-orbit calibration of installation parameter of multiple star sensors system for optical remote sensing satellite with ground control points[J]. Remote Sensing, 2020, 12(7): 1055. |
20 | YANG Z G, ZHU X C, CAI Z M, et al. A real-time calibration method for the systematic errors of a star sensor and gyroscope units based on the payload multiplexed[J]. Optik, 2021, 225: 165731. |
21 | MEEUS J. Astronomical algorithms[M]. Richmond: Willmann-Bell, 1991: 123-136. |
22 | 郑兆瑛, 吴桢, 章海鹰, 等. 基于边缘探测器的FMG稳像探测研究[J]. 天文学报, 2020, 61(4): 16-23. |
ZHENG Z Y, WU Z, ZHANG H Y, et al. Research on the limb sensor for the FMG image stabilization system[J]. Acta Astronomica Sinica, 2020, 61(4): 16-23 (in Chinese). | |
23 | LEE J, VAN SIELEGHEM E, KIM H, et al. Analytical model of the vertical pinned photodiode[J]. IEEE Transactions on Electron Devices, 2022, 69(10): 5603-5606. |
24 | BOSIERS J T, PETERS I M, DRAIJER C, et al. Technical challenges and recent progress in CCD imagers[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 565(1): 148-156. |
25 | DENG X M, FAN M, XIE Y. Comparisons and evaluations of JPL ephemerides[J]. Chinese Astronomy and Astrophysics, 2014, 38(3): 330-341. |
26 | LIU N, ZHU Z, ANTONIADIS J, et al. Systematics of planetary ephemeris reference frames inferred from pulsar timing astrometry[J]. Astronomy & Astrophysics, 2023, 674: A187. |
27 | MACDONALD A. Derivation of the Lorentz transformation[J]. American Journal of Physics, 1981, 49(5): 493. |
/
〈 |
|
〉 |