航空发动机数字孪生专栏

基于增强现实的航空发动机机匣数字孪生测调系统

  • 梅英杰 ,
  • 王大伟 ,
  • 孙传智 ,
  • 袁腊梅 ,
  • 王晓明 ,
  • 刘永猛
展开
  • 1.哈尔滨工业大学 仪器科学与工程学院 超精密光电仪器工程研究所,哈尔滨 150080
    2.哈尔滨工业大学 超精密仪器技术及智能化工信部重点实验室,哈尔滨 150080
    3.哈尔滨工业大学 数学学院,哈尔滨 150080
.E-mail: lym@hit.edu.cn

收稿日期: 2023-08-18

  修回日期: 2023-09-12

  录用日期: 2023-10-09

  网络出版日期: 2023-11-22

基金资助

国家重点研发计划(2021YFF0603200);国家自然科学基金重大研究项目(91960109);国家自然科学基金(52205560);中国博士后科学基金(2021T140164);黑龙江省自然科学基金(LH2020E042);黑龙江省重点研发项目(2022ZX03A03);黑龙江省博士后基金(LBH-TZ2112);中央高校基本科研业务费专项资金(2022FRFK060025)

A digital twin testing and adjusting system for aero-engine casings based on augmented reality

  • Yingjie MEI ,
  • Dawei WANG ,
  • Chuanzhi SUN ,
  • Lamei YUAN ,
  • Xiaoming WANG ,
  • Yongmeng LIU
Expand
  • 1.Center of Ultra-Precision Optoelectronic Instrument Engineering,School of Instrumentation Science and Engineering,Harbin Institute of Technology,Harbin 150080,China
    2.Key Lab of Ultra-Precision Intelligent Instrumentation Engineering,Ministry of Industry and Information Technology,Harbin Institute of Technology,Harbin 150080,China
    3.School of Mathematics,Harbin Institute of Technology,Harbin 150080,China
E-mail: lym@hit.edu.cn

Received date: 2023-08-18

  Revised date: 2023-09-12

  Accepted date: 2023-10-09

  Online published: 2023-11-22

Supported by

National Key R&D Program of China(2021YFF0603200);National Natural Science Foundation Major Research Projects of China(91960109);National Natural Science Foundation of China(52205560);China Postdoctoral Science Foundation(2021T140164);Natural Science Foundation of Heilongjiang Province of China(LH2020E042);Key R&D Project of Heilongjiang Province(2022ZX03A03);Heilongjiang Postdoctoral Fund(LBH-TZ2112);The Fundamental Research Funds for the Central Universities(2022FRFK060025)

摘要

为了提高航空发动机机匣装配精度和效率,提出基于增强现实的航空发动机机匣数字孪生测调系统。利用增强现实设备的高保真交互特性,对航空发动机多级机匣装配进行实时可视化引导装配。建立了航空发动机多级机匣装配数学模型,实现了多级机匣装配同轴度精准预测。将装配数学模型和可视化模型相结合,实现航空发动机机匣数字孪生模型映射。基于模拟的航空发动机多级机匣进行数字孪生装配实验,实验结果表明,提出的数字孪生装配系统的同轴度预测误差为0.6 μm,增强现实可视化交互的平均延时为11 ms,平均帧率为45 fps,装配消耗时间减少了5 h,有效提高了航空发动机机匣装配精度和效率。

本文引用格式

梅英杰 , 王大伟 , 孙传智 , 袁腊梅 , 王晓明 , 刘永猛 . 基于增强现实的航空发动机机匣数字孪生测调系统[J]. 航空学报, 2024 , 45(21) : 629462 -629462 . DOI: 10.7527/S1000-6893.2023.29462

Abstract

In order to improve the assembly accuracy and efficiency of aero-engine casings, this paper proposes a digital twin testing and adjusting system for aero-engine casings based on augmented reality. Utilizing the high fidelity interactive characteristics of augmented reality device, real-time visualization guided assembly of multi-stage aero-engine casings is carried out. Furthermore, this paper establishes a mathematical model for the assembly of aero-engine multi-stage casings to achieve accurate prediction of coaxiality of multi-stage casing assembly. Combining the assembly mathematical model with visual models, this paper conducts digital twin assembly experiments based on simulated multi-stage aero-engine casings, to achieve digital twin model mapping for aero-engine casings. The experimental results show that the coaxiality prediction error of the digital twin assembly system proposed in this paper is 0.6 μm, the average latency of augmented reality visualization interaction is 11 ms, the average frame rate is 45 fps, and the assembly consumption time is reduced by 5 h, effectively improving the accuracy and efficiency of aero-engine casing assembly.

参考文献

1 赵罡, 李瑾岳, 徐茂程, 等. 航空发动机关键装配技术综述与展望[J]. 航空学报202243(10): 527484 .
  ZHAO G, LI J Y, XU M C, et al. Overview and prospect of key assembly technologies for aero-engines[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527484 (in Chinese).
2 孙惠斌, 颜建兴, 魏小红, 等. 数字孪生驱动的航空发动机装配技术[J]. 中国机械工程202031(7): 833-841.
  SUN H B, YAN J X, WEI X H, et al. Digital twin driven aero-engine assembly technology[J]. China Mechanical Engineering202031(7): 833-841 (in Chinese).
3 高一超. 航空发动机转子装配精度预测及相位优化方法研究[D]. 大连: 大连理工大学, 2020: 1-14.
  GAO Y C. Research on assembly accuracy prediction and phase optimization methods for aeroengine rotors[D]. Dalian: Dalian University of Technology, 2020: 1-14 (in Chinese)
4 ZHANG M W, LIU Y M, WANG D W, et al. A coaxiality measurement method for the aero-engine rotor based on common datum axis[J]. Measurement2022191: 110696.
5 LI M H, WANG Y L, SUN Q C, et al. Assembly accuracy prediction and optimization of aero-engine rotor under the separation condition of assembly and measurement[J]. International Journal of Advanced Manufacturing Technology2022120: 3103-3112.
6 英国泰勒·霍普森有限公司. 500H系列圆度仪[J]. 传感器世界201420(8): 44.
  TAYLOR HOPSON. 500H series roundness tester[J]. Sensor World201420(8): 44 (in Chinese).
7 陈凯, 唐湘林, 叶飞, 等. 航空发动机转子装配工艺仿真与预测研究[J]. 风机技术202163(1): 72-78.
  CHEN K, TANG X L, YE F, et al. Research on simulation and prediction of aeroengine rotor assembly process[J]. Chinese Journal of Turbomachinery202163 (1): 72-78 (in Chinese).
8 ZHOU T Y, GAO H. Modeling and simulation of the assembly accuracy of aero-engine rotors in the docking processes using a specially designed novel multi-DOF NC motion platform[J]. Aerospace Science and Technology2021113: 106648.
9 KLOCKE F, VESELOVAC D, AUERBACH T, et al. Intelligent assembly for aero engine components[C]∥ International Conference on Intelligent Robotics and Applications. 2008: 927-935.
10 梅顺, 卢进, 谢龙翔, 等. 压气机试验件机匣同心偏差传递预测及改进[J]. 航空精密制造技术202359(2): 24-27.
  MEI S, LU J, XIE L X, et al. Prediction and improvement of concentric deviation transmission in compressor test pieces and casings[J]. Aerospace Precision Manufacturing Technology202359(2): 24-27 (in Chinese).
11 MU X K, YUAN B, WANG Y L, et al. Novel application of mapping method from small displacement torsor to tolerance: Error optimization design of assembly parts[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture2022236(6-7): 955-967.
12 邓王倩, 莫蓉, 陈凯, 等. 基于实测数据的航空发动机转子叶尖装配间隙预测[J]. 航空动力学报202237(6): 1273-1283.
  DENG W Q, MO R, CHEN K, et al. Prediction of assembly clearance of aeroengine rotor tip based on measured data[J]. Journal of Aerospace Power202237(6): 1273-1283 (in Chinese).
13 李明华. 航空发动机转子装配几何精度测试与预测[D]. 大连: 大连理工大学, 2022: 39-58.
  LI M H. Geometric accuracy testing and prediction of aeroengine rotor assembly[D]. Dalian: Dalian University of Technology, 2022: 39-58 (in Chinese).
14 MU X K, WANG Y L, YUAN B, et al. A new assembly precision prediction method of aeroengine high-pressure rotor system considering manufacturing error and deformation of parts[J]. Journal of Manufacturing Systems202161: 112-124.
15 李成钿. 基于深度学习的航空发动机转子智能装配方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 1-7.
  LI C T. Research on intelligent assembly method for aeroengine rotors based on deep learning[D]. Harbin: Harbin Institute of Technology, 2020: 1-7 (in Chinese).
16 LI J J, ZHOU G H, ZHANG C. A twin data and knowledge-driven intelligent process planning framework of aviation parts[J]. International Journal of Production Research202260(17): 5217-5234.
17 韩笃铭. 面向混合现实的航空发动机三维跟踪注册技术研究[D]. 德阳: 中国民用航空飞行学院, 2022: 1-9.
  HAN D M. Research on 3D Tracking and registration technology for aeroengine in hybrid reality[D]. Deyang: China Civil Aviation Flight Academy, 2022: 1-9 (in Chinese).
18 张譍之, 孙惠斌, 周平, 等. 数字孪生驱动的转静子装配间隙动态预测与调控[J]. 计算机集成制造系统202329(6): 2035-2046.
  ZHANG Y Z, SUN H B, ZHOU P, et al. Dynamic prediction and regulation of assembly gap of rotary stator driven by digital twins[J]. Computer Integrated Manufacturing System202329(6): 2035-2046 (in Chinese).
19 GREGORIO J L, LARTIGUE C, THIEBAUT F, et al. A digital twin-based approach for the management of geometrical deviations during assembly processes[J]. Journal of Manufacturing Systems202158: 108-117.
20 丁志昆, 孙奕程, 段亮亮, 等. 基于数字孪生的增强现实多人协作装配[J]. 计算机集成制造系统202329(6): 2019-2034.
  DING Z K, SUN Y C, DUAN L L, et al. Augmented reality multi person collaborative assembly based on digital twins[J]. Computer Integrated Manufacturing Systems202329(6): 2019-2034 (in Chinese).
21 苑鑫, 王海坤, 赵旷世, 等. 基于增强现实技术的燃气轮机装配指导系统研究与实现[J]. 热能动力工程202237(S1): 48-53.
  YUAN X, WANG H K, ZHAO K S, et al. Research and implementation of a gas turbine assembly guidance system based on augmented reality technology[J] Thermal Power Engineering202237(S1): 48-53 (in Chinese).
22 MARINO E, BARBIERI L, COLACINO B, et al. User-centered design of an augmented reality tool for smart operator in production environment[C]∥Design Tools and Methods in Industrial Engineering II (ADM). 2022: 125-132.
23 李艺, 刘阳, 孙冲, 等. 一种基于位形空间理论的几何建模方法[J]. 机械设计与制造2005(5): 54-56.
  LI Y, LIU Y, SUN C, et al. A geometric modeling method based on configuration space theory[J]. Mechanical Design and Manufacturing2005 (5): 54-56 (in Chinese).
24 中国国家标准化管理委员会. 产品几何技术规范(GPS) 几何公差 形状、方向、位置和跳动公差标注: [S]. 北京: 中国标准出版社, 2018.
  SAC. Geometrical Product Specifications (GPS) geometric tolerances for shape, direction, position, and runout tolerances: [S]. Beijing: Standards Press of China, 2018 (in Chinese).
25 BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. Proceedings of SPIE - The International Society for Optical Engineering199214(3):239-256.
26 MEI Y J, SUN C Z, LI C T, et al. Research on intelligent assembly method of aero-engine multi-stage rotors based on SVM and variable-step AFSA-BP neural network[J]. Advanced Engineering Informatics202254: 101798.
27 孙传智. 基于矢量投影的多级转子同轴度测量方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 21-40.
  SUN C Z. Research on multistage rotor coaxiality measurement method based on vector projection[D] Harbin: Harbin Institute of Technology, 2017: 21-40 (in Chinese).
文章导航

/