材料工程与机械制造

薄层碳纤维/不锈钢极薄带纤维金属层板的高速冲击性能

  • 魏士博 ,
  • 舒洪基 ,
  • 张晓琼 ,
  • 赵婷婷 ,
  • 王涛 ,
  • 王志华 ,
  • 黄庆学
展开
  • 1.太原理工大学 机械与运载工程学院,太原 030024
    2.太原理工大学 金属成形技术与重型装备全国重点实验室,太原 030024

收稿日期: 2023-08-09

  修回日期: 2023-10-08

  录用日期: 2023-11-13

  网络出版日期: 2023-11-22

基金资助

国家自然科学基金(51974196);国家自然科学基金重点专项(U22A20188);山西省科技重大专项(202101120401008);山西省基础研究青年基金(20210302124691)

High⁃velocity impact performance of thin⁃ply carbon fiber/ ultra⁃thin stainless⁃steel strips fiber metal laminates

  • Shibo WEI ,
  • Hongji SHU ,
  • Xiaoqiong ZHANG ,
  • Tingting ZHAO ,
  • Tao WANG ,
  • Zhihua WANG ,
  • Qingxue HUANG
Expand
  • 1.College of Mechanical and Vehicle Engineering,Taiyuan University of Technology,Taiyuan 030024,China
    2.State Key Laboratory of Metal Forming Technology and Heavy Equipment,Taiyuan University of Technology,Taiyuan 030024,China

Received date: 2023-08-09

  Revised date: 2023-10-08

  Accepted date: 2023-11-13

  Online published: 2023-11-22

Supported by

National Natural Science Foundation of China(51974196);Key Program of Joint Funds of the National Natural Science Foundation of China(U22A20188);Major Science and Technology Project of Shanxi Province(202101120401008);Youth Foundation for Basic Research of Shanxi Province(20210302124691)

摘要

为了增强碳纤维复合材料的韧性并提升其高速冲击性能,提出一种组分材料分别为30 μm厚薄层碳纤维预浸料和50 μm厚不锈钢极薄带的新型纤维金属层板——薄层碳纤维/不锈钢极薄带纤维金属层板(CUSFML)。在金属体积含量(MVF)为0.250~0.625的范围内,制备了3类薄层CUSFML。利用空气炮在45~120 m/s速度范围内对纯碳纤维层板和3类薄层CUSFML开展了高速冲击实验研究,并结合修正后的三维Hashin失效准则在ABAQUS/Explicit软件中对薄层CUSFML的高速冲击响应进行了数值仿真。系统分析了高速冲击下MVF数值变化对薄层CUSFML的动态响应特征和能量吸收的影响规律。研究结果表明:薄层CUSFML在高速冲击下的性能较传统碳纤维复合材料有显著提升。经实验数据分析及数值计算可知,所制备的薄层CUSFML的比吸能最高可达8.51 J·m2/kg,较纯碳纤维层板提升19.2%;冲击承载最高可达6 713 N,约为纯碳纤维层板的2.5倍。提高薄层CUSFML中不锈钢极薄带的体积含量在一定范围内可增强金属层塑性变形和断裂在能量吸收中的主导作用,提升层板的高速冲击性能。但随着MVF数值的持续增加,薄层CUSFML的比吸能会出现小幅下降。对比各类层板的动态响应特征后发现薄层CUSFML在MVF为0.455附近的抗冲击性能及吸能性能最为优异。

本文引用格式

魏士博 , 舒洪基 , 张晓琼 , 赵婷婷 , 王涛 , 王志华 , 黄庆学 . 薄层碳纤维/不锈钢极薄带纤维金属层板的高速冲击性能[J]. 航空学报, 2024 , 45(14) : 429420 -429420 . DOI: 10.7527/S1000-6893.2023.29420

Abstract

To increase the toughness and high-velocity impact performance of carbon fiber composites, a new type of fiber metal laminates—thin-ply Carbon fiber/Ultra-thin Stainless-steel strips Fiber Metal Laminates (CUSFML) was proposed, which consisted of 30 μm thick thin-ply carbon fiber prepreg and 50 μm thick ultra-thin stainless-steel strips. Three types of thin-ply CUSFML were prepared in the range of Metal Volume Fraction (MVF) from 0.250 to 0.625. The high-velocity impact experiments of the pure carbon fiber laminates and three types of thin-ply CUSFML were carried out in the velocity range of 45–120 m/s by using an air gun. Moreover, the high-velocity impact responses of thin-ply CUSFML were also numerically simulated in ABAQUS/Explicit combined with the modified 3D Hashin failure criteria. The influence of MVF values on the dynamic response characteristics and energy absorption of thin-ply CUSFML under high-velocity impact was systematically analyzed. The results show that the high-velocity impact performance of thin-ply CUSFML can be significantly improved compared with that of traditional carbon fiber laminates. Through experimental data analysis and numerical calculation, the maximum specific absorption energy of prepared thin-ply CUSFML can reach 8.51 J·m2/kg, which is 19.2% higher than that of pure carbon fiber laminates. The impact load can reach up to 6 713 N, about 2.5 times that of pure carbon fiber laminates.Results also show that increasing the volume content of ultra-thin stainless-steel strips in the thin-ply CUSFML in a certain range could enhance the leading role of plastic deformation of the metal layer and fracture in the energy absorption mechanism, and improve the high-velocity impact performance of the laminates. However, with the continuous increase of MVF value, the specific energy absorption of thin-ply CUSFML would decrease slightly. After comparing the dynamic response characteristics of various laminates, it is found that the thin-ply CUSFML have the best impact resistance and energy absorption performance near MVF of 0.455.

参考文献

1 CHAI G B, MANIKANDAN P. Low velocity impact response of fibre-metal laminates—A review[J]. Composite Structures2014107: 363-381.
2 佟安时, 谢里阳, 白恩军, 等. 纤维金属层板的静力学性能测试与预测模型[J]. 航空学报201738(11): 221193.
  TONG A S, XIE L Y, BAI E J, et al. Test and prediction model of statics property of fiber metal laminates[J]. Acta Aeronautica et Astronautica Sinica201738(11): 221193 (in Chinese).
3 VLOT A, ALDERLIESTEN R C, HOOIJMEIJER P A, et al. Fibre metal laminates: A state of the art[J]. International Journal of Materials and Product Technology200217(1-2): 79-98.
4 陈勇, 廖高健, 任立海, 等. 玻璃纤维增强铝合金层板高速冲击损伤容限[J]. 航空学报201839(7): 221733.
  CHEN Y, LIAO G J, REN L H, et al. Damage tolerance of GLARE laminates subjected to high-velocity impact[J]. Acta Aeronautica et Astronautica Sinica201839(7): 221733 (in Chinese).
5 BANAT D, MANIA R J. Damage analysis of thin-walled GLARE members under axial compression-Numerical and experiment investigations[J]. Composite Structures2020241: 112102.
6 KHAN S H, SHARMA A P, KITEY R, et al. Effect of metal layer placement on the damage and energy absorption mechanisms in aluminium/glass fibre laminates[J]. International Journal of Impact Engineering2018119: 14-25.
7 HU C Z, SANG L, JIANG K, et al. Experimental and numerical characterization of flexural properties and failure behavior of CFRP/Al laminates[J]. Composite Structures2022281: 115036.
8 NAKATANI H, KOSAKA T, OSAKA K, et al. Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact[J]. Composites Part A: Applied Science and Manufacturing201142(7): 772-781.
9 陈园方, 李玉龙, 刘军, 等. 典型前缘结构抗鸟撞性能改进研究[J]. 航空学报201031(9): 1781-1787.
  CHEN Y F, LI Y L, LIU J, et al. Study of bird strike on an improved leading edge structure[J]. Acta Aeronautica et Astronautica Sinica201031(9): 1781-1787 (in Chinese).
10 LEE D W, PARK B J, PARK S Y, et al. Fabrication of high-stiffness fiber-metal laminates and study of their behavior under low-velocity impact loadings[J]. Composite Structures2018189: 61-69.
11 K?TTER B, YAMADA K, K?RBELIN J, et al. Steel foil reinforcement for high performance bearing strength inThin-Ply composites [J]. Composites Part C: Open Access20214: 085-100.
12 P?RN?NEN T, KANERVA M, SARLIN E, et al. Debonding and impact damage in stainless steel fibre metal laminates prior to metal fracture[J]. Composite Structures2015119: 777-786.
13 LIU C, YANG G L, XIAO Y, et al. Experimental and numerical investigation on the impact resistance of fiber metal laminates[J]. Vibroengineering Procedia202136: 78-82.
14 PATELM, PATELS, AHMADS. Blast analysis of efficient honeycomb sandwich structures with CFRP/Steel FML skins[J]. International Journal of Impact Engineering2023178: 104609.
15 LU F, ZHONG Q P, CAO C X, et al. Galvanic corrosion and protection of GECM/LY12CZ couples under different atmospheric exposure conditions[J]. Acta Metallurgica Sinica (English Letters)200316(1): 41-45.
16 吴国清, 潘英才, 张宗科, 等. 超轻纤维金属层合板的研究进展[J]. 航空制造技术201659(S2): 133-136.
  WU G Q, PAN Y C, ZHANG Z K, et al. Research progress of ultra-light fiber metal laminates[J]. Aeronautical Manufacturing Technology201659(S2): 133-136 (in Chinese).
17 曹勇, 张超. 薄层复合材料冲击损伤行为研究进展[J]. 航空学报202243(6): 525323.
  CAO Y, ZHANG C. Impact damage behavior of thin-ply composites: A review[J]. Acta Aeronautica et Astronautica Sinica202243(6): 525323 (in Chinese).
18 JAKUBCZAK P, BIENIA? J, DADEJ K. Experimental and numerical investigation into the impact resistance of aluminium carbon laminates[J]. Composite Structures2020244: 112319.
19 赵天, 李营, 张超, 等. 高性能航空复合材料结构的关键力学问题研究进展[J]. 航空学报202243(6): 526851.
  ZHAO T, LI Y, ZHANG C, et al. Fundamental mechanical problems in high-performance aerospace composite structures: State-of-art review[J]. Acta Aeronautica et Astronautica Sinica202243(6): 526851 (in Chinese).
20 SHARMA A P, VELMURUGAN R, SHANKAR K, et al. High-velocity impact response of titanium-based fiber metal laminates. Part I: Experimental investigations[J]. International Journal of Impact Engineering2021152: 103845.
21 SHARMA A P, KHAN S H. Influence of metal layer distribution on the projectiles impact response of glass fiber reinforced aluminum laminates[J]. Polymer Testing201870: 320-347.
22 DECICCOD, TAHERIF. Performances of magnesium- and steel-based 3D fiber-metal laminates under various loading conditions[J]. Composite Structures2019229: 111390.
23 SEYED YAGHOUBI A, LIAW B. Thickness influence on ballistic impact behaviors of GLARE 5 fiber-metal laminated beams: Experimental and numerical studies[J]. Composite Structures201294(8): 2585-2598.
24 KUBITA, TRZEPIECI?SKI T, KICI?SKI R, et al. Three-dimensional smooth particle hydrodynamics modeling and experimental analysis of the ballistic performance of steel-based FML targets[J]. Materials202215(10): 3711.
25 唐小军, 回天力, 王振清, 等. 碳纤维-不锈钢层板热载条件下冲击动态响应及层间损伤仿真研究[J]. 应用数学和力学201637(10): 1026-1038.
  TANG X J, HUI T L, WANG Z Q, et al. Numerical simulation of impact dynamic responses and interlayer failure of CFRMLs under thermal loads[J]. Applied Mathematics and Mechanics201637(10): 1026-1038 (in Chinese).
26 PANG Y Z, YAN X J, WU L Z, et al. Experiment study of basalt fiber/steel hybrid laminates under high-velocity impact performance by projectiles[J]. Composite Structures2022280: 114848.
27 REN Z K, FAN W W, HOU J, et al. A numerical study of slip system evolution in ultra-thin stainless steel foil[J]. Materials201912(11): 1819-1831.
28 REYES VILLANUEVA G, CANTWELL W J. The high velocity impact response of composite and FML-reinforced sandwich structures[J]. Composites Science and Technology200464(1): 35-54.
29 KHORAMISHAD H, ALIKHANI H, DARIUSHI S. An experimental study on the effect of adding multi-walled carbon nanotubes on high-velocity impact behavior of fiber metal laminates[J]. Composite Structures2018201: 561-569.
30 李应刚, 张雨, 朱凌, 等. 船用蜂窝金属夹芯板重复冲击实验研究[J]. 船舶力学202125(5): 637-644.
  LI Y G, ZHANG Y, ZHU L, et al. Experimental study on the dynamic behaviours of honeycomb sandwich plates under repeated impacts[J]. Journal of Ship Mechanics202125(5): 637-644 (in Chinese).
31 SHIBUYA Y, ZHANG J W, SATO Y, et al. Evaluation of the mechanical properties and deformability of metal-based composite sheets made of thin stainless-steel sheets and carbon fiber reinforced plastics[J]. International Journal of Material Forming202215(4): 47.
32 JAKUBCZAK P. The comparison of the veritable response to impact load of conventional and thin-ply types of fibre metal laminates[J]. Composite Structures2021257: 113151.
33 KONG D W, WANG D F, ZHANG X P. Study on the forming process and shear mechanical behavior of CFRP/Al self-piercing riveting employed 3D modeling[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications2023237(8): 1771-1787.
34 ZHU Q, ZHANG C, CURIEL-SOSAJ L, et al. Finite element simulation of damage in fiber metal laminates under high velocity impact by projectiles with different shapes[J]. Composite Structures2019214: 73-82.
35 ORIFICI A C, HERSZBERG I, THOMSON R S. Review of methodologies for composite material modelling incorporating failure[J]. Composite Structures200886(1-3): 194-210.
36 JAKUBCZAK P. The impact behaviour of hybrid titanium glass laminates—Experimental and numerical approach[J]. International Journal of Mechanical Sciences2019159: 58-73.
37 BIENIAS J, JAKUBCZAK P, DADEJ K. Low-velocity impact resistance of aluminium glass laminates—Experimental and numerical investigation[J]. Composite Structures2016152: 339-348.
38 ZHANG F K, LIN Y, WU J A, et al. Comparison of stacking sequence on the low-velocity impact failure mechanisms and energy dissipation characteristics of CFRP/Al hybrid laminates[J]. Polymer Composites202243(8): 5544-5562.
文章导航

/