燃料电池燃气涡轮航空混合推进系统总体性能及匹配分析
收稿日期: 2023-07-17
修回日期: 2023-08-14
录用日期: 2023-11-14
网络出版日期: 2023-11-22
基金资助
先进航空动力创新工作站项目(HKCX2024-01-006);中央高校基本科研业务费专项资金(D5000220466)
Performance and matching analysis of gas turbine hybrid engine integrated with fuel cells in aviation
Received date: 2023-07-17
Revised date: 2023-08-14
Accepted date: 2023-11-14
Online published: 2023-11-22
Supported by
Advanced Aviation Power Innovation Workstation Project(HKCX2024-01-006);the Fundamental Research Funds for the Central Universities(D5000220466)
为大幅减小发动机耗油率,降低碳排放,提升飞机续航能力,提出了基于碳氢燃料的燃料电池燃气涡轮航空混合推进系统,通过预重整和高温燃料电池实现碳氢燃料的电化学利用并避免传统氢燃料电池飞机储氢困难、体积能量密度小的问题,另一方面,利用燃气涡轮增加燃料电池功率密度,减小其体积和质量。以MQ-1无人机为匹配对象,通过建立推进系统质量和热力学性能模型,对混合系统进行了部件参数匹配分析。随着燃料利用率减小,燃料电池极化减小,换热器平均换热温差增加,因而混合推进系统质量急剧下降,耗油率大幅上升,该航空混合系统质量与总效率的优化方向相反。随压比增加,燃料电池功率和质量增加幅度较大,导致飞机载油量降低,但在燃料电池电流密度为常数时,对燃料电池和混合系统效率影响较小。设计条件下,混合系统中燃料电池和换热器占据混合系统质量的主要部分,超过70%。相比原型内燃机动力,混合推进系统质量约增加40%,但热效率可提高约111%。此外,混合推进系统可满足飞机在爬升阶段和巡航阶段的功率需求,装备该动力的无人机续航时间可提高97%。
姬志行 , 王占学 , 程莉雯 , 秦江 , 刘禾 . 燃料电池燃气涡轮航空混合推进系统总体性能及匹配分析[J]. 航空学报, 2024 , 45(10) : 129326 -129326 . DOI: 10.7527/S1000-6893.2023.29326
To reduce the specific fuel consumption of the engine, reduce carbon emission, and improve aircraft endurance, this paper proposes a Solid Oxide Fuel Cell (SOFC) gas turbine aviation hybrid propulsion system with hydrocarbon fuel. Hydrocarbon fuel is used through pre-reforming and the SOFC, eliminating the need to carry hydrogen with low volume energy density on the aircraft. Moreover, the power density of the hybrid engine is improved, and its mass and volume are decreased by integrating SOFC with gas turbines. Mass and thermodynamic models are constructed to analyze the performance of the hybrid engine equipped with the MQ-1. As the fuel utilization is decreased, the polarization loss of the SOFC is decreased, and the average temperature difference of the heat exchanger is increased, resulting in a decrease in the mass of the hybrid engine and an increase in the specific fuel consumption. The optimization direction of the system mass is opposed to that of the overall efficiency. As the pressure ratio grows, the power and mass of the SOFC are increased, leading to a decrease in fuel mass. However, the efficiency of the fuel cell and the hybrid system is slightly affected when the current density of the fuel cell remains constant. Under the designed conditions, the mass of the SOFC and heat exchangers accounts for more than 70% of the hybrid engine’s total mass. The mass of the hybrid engine is increased by 40%, and the thermal efficiency of the hybrid engine is improved by 111% compared to that of the internal combustion engine. Furthermore, the hybrid engine can meet the power requirements of the aircraft during both climbing and cruising stages. The endurance of an aircraft equipped with a hybrid engine can improve by 97%.
1 | 曹秋生, 张会军. 高空长航时无人机的发展特点及技术难点探讨[J]. 中国电子科学研究院学报, 2008, 3(1): 8-13. |
CAO Q S, ZHANG H J. Characteristics of HALE UAVs in development and discussion of existing technical difficulties[J]. Journal of China Academy of Electronics and Information Technology, 2008, 3(1): 8-13 (in Chinese). | |
2 | CIRIGLIANO D, FRISCH A M, LIU F, et al. Diesel, spark-ignition, and turboprop engines for long-duration unmanned air flights[J]. Journal of Propulsion and Power, 2018, 34(4): 878-892. |
3 | 向锦武, 阚梓, 邵浩原, 等. 长航时无人机关键技术研究进展[J]. 哈尔滨工业大学学报, 2020, 52(6): 57-77. |
XIANG J W, KAN Z, SHAO H Y, et al. A review of key technologies for long-endurance unmanned aerial vehicle[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 57-77 (in Chinese). | |
4 | 于广民, 王奉明, 卢娟. 高空长航时无人机用发动机推力需求及技术特点分析[J]. 燃气涡轮试验与研究, 2021, 34(6): 41-46, 55. |
YU G M, WANG F M, LU J. Analysis of engine requirements and technical characteristics for high altitude long endurance UAV[J]. Gas Turbine Experiment and Research, 2021, 34(6): 41-46, 55 (in Chinese). | |
5 | JAIN N, LE MOINE A, CHAUSSONNET G, et al. A critical review of physical models in high temperature multiphase fluid dynamics: Turbulent transport and particle-wall interactions[J]. Applied Mechanics Reviews, 2021, 73(4): 040801. |
6 | 丁金亮. 民用飞机燃料电池技术应用现状及未来展望[J]. 军民两用技术与产品, 2019(7): 59-62. |
DING J L. Application status and future prospect of civil aircraft fuel cell technology[J]. Dual Use Technologies & Products, 2019(7): 59-62 (in Chinese). | |
7 | STROMAN R O, SCHUETTE M W, SWIDER-LYONS K, et al. Liquid hydrogen fuel system design and demonstration in a small long endurance air vehicle[J]. International Journal of Hydrogen Energy, 2014, 39(21): 11279-11290. |
8 | BAO C, WANG Y, FENG D L, et al. Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system[J]. Progress in Energy and Combustion Science, 2018, 66: 83-140. |
9 | GAMBLE D E. World record duration flight of group 2 unmanned aircraft with VTOL and hybrid propulsion system using solid oxide fuel cell[C]∥Proceedings of the AIAA Scitech 2023 Forum. Reston: AIAA, 2023. |
10 | 胡焦英, 毛军逵, 贺振宗. 基于航空煤油重整的SOFC-GT混合动力系统性能[J]. 航空动力学报, 2020, 35(2): 325-336. |
HU J Y, MAO J K, HE Z Z. Performance of the SOFC-GT hybrid system based on aviation kerosene reforming[J]. Journal of Aerospace Power, 2020, 35(2): 325-336 (in Chinese). | |
11 | 雷涛, 闵志豪, 付红杰, 等. 燃料电池无人机混合电源动态平衡能量管理策略[J]. 航空学报, 2020, 41(12): 287-301. |
LEI T, MIN Z H, FU H J, et al. Dynamic balanced energy management strategies for fuel-cell hybrid power system of unmanned air vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 287-301 (in Chinese). | |
12 | ACHENBACH E, RIENSCHE E. Methane/steam reforming kinetics for solid oxide fuel cells[J]. Journal of Power Sources, 1994, 52(2): 283-288. |
13 | CAMPANARI S, IORA P. Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry[J]. Journal of Power Sources, 2004, 132(1-2): 113-126. |
14 | 陈宏芳, 杜建华. 高等工程热力学[M]. 北京: 清华大学出版社, 2003. |
CHEN H F, DU J H. Advanced engineering thermodynamics[M]. Beijing: Tsinghua University Press, 2003 (in Chinese). | |
15 | AGUIAR P, ADJIMAN C S, BRANDON N P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model-based steady-state performance[J]. Journal of Power Sources, 2004, 138(1-2): 120-136. |
16 | NAVASA M, GRAVES C, CHATZICHRISTODOULOU C, et al. A three dimensional multiphysics model of a solid oxide electrochemical cell: A tool for understanding degradation[J]. International Journal of Hydrogen Energy, 2018, 43(27): 11913-11931. |
17 | BAGUL P, RANA Z A, JENKINS K W, et al. Computational engineering analysis of external geometrical modifications on MQ-1 unmanned combat aerial vehicle[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1154-1165. |
18 | MANSOURI H, OMMI F. Performance prediction of aircraft gasoline turbocharged engine at high-altitudes[J]. Applied Thermal Engineering, 2019, 156: 587-596. |
19 | CAVCAR M. Bréguet range equation?[J]. Journal of Aircraft, 2006, 43(5): 1542-1544. |
20 | JI Z X, QIN J, CHENG K L, et al. A comprehensive evaluation of ducted fan hybrid engines integrated with fuel cells for sustainable aviation[J]. Renewable and Sustainable Energy Reviews, 2023, 185: 113567. |
21 | COLLINS J M, MCLARTY D. All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids[J]. Applied Energy, 2020, 265: 114787. |
22 | GESELL H, WOLTERS F, PLOHR M. System analysis of turbo-electric and hybrid-electric propulsion systems on a regional aircraft[J]. The Aeronautical Journal, 2019, 123(1268): 1602-1617. |
23 | JI Z X, ROKNI M M, QIN J, et al. Energy and configuration management strategy for battery/fuel cell/jet engine hybrid propulsion and power systems on aircraft[J]. Energy Conversion and Management, 2020, 225: 113393. |
24 | HASHIMOTO S, HIROTA T, SUZUKI K, et al. Material development strategy of lightweight solid oxide fuel cells for airplane system electrification[J]. ECS Transactions, 2019, 91(1): 311-318. |
25 | NASA. NASA high power density solid oxide fuel cell[R]. Washington, D.C.: NASA, 2023. |
26 | HILDING T. WSU researchers advance fuel cell technology[EB/OL]. (2020-06-08)[2023-07-17]. . |
27 | WATERS D F. Modeling of gas turbine-solid oxide fuel cell systems for combined propulsion and power on aircraft[D]. College Park: University of Maryland, 2015. |
/
〈 |
|
〉 |