热塑性环氧树脂合成及增韧低温复合材料
收稿日期: 2023-09-20
修回日期: 2023-10-17
录用日期: 2023-11-08
网络出版日期: 2023-11-16
基金资助
中央高校基本科研业务费(DUT22LAB114);国家重点研发计划(2018YFA0702800);辽宁省自然科学基金(2022-MS-148)
Synthesis of thermoplastic epoxy resin and toughening low⁃temperature composite materials
Received date: 2023-09-20
Revised date: 2023-10-17
Accepted date: 2023-11-08
Online published: 2023-11-16
Supported by
Fundamental Research Funds for the Central Universities(DUT22LAB114);National Key Research and Development Program of China(2018YFA0702800);Natural Science Foundation of Liaoning Province(2022-MS-148)
针对碳纤维/环氧树脂复合材料(CF/EP)在低温下易发生分层损伤破坏的问题,首先对热固性环氧树脂进行改性,制备了同体系的热塑性环氧树脂(TPE)颗粒,并将其应用于CF/EP层间进行增韧,与常用的聚酰胺66(PA66)颗粒子和聚醚砜(PES)颗粒进行对比,研究了3种颗粒对CF/EP在室温和低温时的增韧效果。试验结果表明,3种热塑性树脂颗粒均能起到显著的增韧效果,但添加颗粒后对CF/EP基本性能的影响有较大差异。CF/EP层间加入PA66颗粒和PES颗粒后,虽然复合材料韧性有一定提高,但由于树脂基体和增韧颗粒的体系差异,造成了复合材料层间增厚和基本力学性能的下降。而层间添加TPE颗粒的CF/EP层间断裂韧性显著提高,其室温下的Ⅱ型层间断裂韧性(GIIC)达到1 126 J/m2,提高了88.0%;-183 ℃下的GIIC达到1 386 J/m2,提高了109.2%,同时,TPE颗粒的加入对CF/EP层合板的厚度、室温与低温下的层间剪切强度和弯曲强度影响不大,这是由于TPE颗粒与预浸料中热固性环氧树脂属于同系材料,相互可以充分地融合流动,生成了更加独特的层间结构。因此,提出的同体系的TPE颗粒可以更全面有效地对复合材料进行室温和低温下的层间增韧。
刘新 , 尹文轩 , 陈铎 , 侯永博 , 张露 , 武湛君 . 热塑性环氧树脂合成及增韧低温复合材料[J]. 航空学报, 2024 , 45(16) : 429623 -429623 . DOI: 10.7527/S1000-6893.2023.29623
To address the problem of delamination damage in Carbon Fiber/Epoxy Resin (CF/EP) composites at low temperatures, thermosetting epoxy resin was first modified to produce Thermoplastic Epoxy Resin (TPE) particles of the same system and were applied to toughen the interlayers of the CF/EP composite. The toughening results of these particles were compared at room and low temperatures with commonly used Polyamide 66 (PA66) and Polyether Sulfone (PES) particles. While all three types of thermoplastic resin particles significantly improved toughness, their effects on the basic properties of CF/EP varied. The introduction of PA66 and PES particles increased the toughness of the composite but caused an increase in interlayer thickness and a decrease in basic mechanical properties due to the disparity between the resin matrix and the toughening particles. However, interlayer fracture toughness was significantly improved when TPE particles were added to the CF/EP interlayers, with Mode Ⅱ interlaminar fracture toughness (GIIC) at room temperature reaching 1 126 J/m2, an increase of 88%, and GIIC at -183 ℃ reaching 1 386 J/m2, an increase of 109.2%. Thanks to the compatibility and sufficient fusion of TPE particles with the thermosetting epoxy resin in the prepreg, the addition of TPE particles did not significantly affect the thickness, interlaminar shear strength, and flexural strength of the CF/EP laminates at both room and low temperatures, resulting in a unique interlayer structure. Thus, the same system TPE particles proposed can more comprehensively and effectively toughen composites at both room and low temperatures.
1 | 陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展, 2009, 28(6): 2-12. |
CHEN X B, ZHANG B Y, XING L Y. Application and development of advanced polymer matrix composites[J]. Materials China, 2009, 28(6): 2-12 (in Chinese). | |
2 | 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. |
DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese). | |
3 | 张龙, 王波, 矫桂琼, 等. 纤维桥连对复合材料Ⅰ型层间断裂韧性的影响[J]. 航空学报, 2013, 34(4): 817-825. |
ZHANG L, WANG B, JIAO G Q, et al. Influence of fiber bridging on mode I interlaminar fracture toughness of composites[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 817-825 (in Chinese). | |
4 | 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1): 522509. |
ZHAO L B, GONG Y, ZHANG J Y. A survey on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522509 (in Chinese). | |
5 | 益小苏, 许亚洪, 程群峰, 等. 航空树脂基复合材料的高韧性化研究进展[J]. 科技导报, 2008, 26(6): 84-92. |
YI X S, XU Y H, CHENG Q F, et al. Development of studies on polymer matrix aircraft composite materials highly toughened[J]. Science & Technology Review, 2008, 26(6): 84-92 (in Chinese). | |
6 | 董慧民, 益小苏, 安学锋, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报, 2014, 31(2): 273-285. |
DONG H M, YI X S, AN X F, et al. Development of interleaved fibre-reinforced thermoset polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 273-285 (in Chinese). | |
7 | MOHAN P. A critical review: The modification, properties, and applications of epoxy resins[J]. Polymer-Plastics Technology and Engineering, 2013, 52(2): 107-125. |
8 | 宋盛菊, 杨法杰, 褚庭亮, 等. 环氧树脂增韧方法及增韧剂的研究进展[J]. 中国印刷与包装研究, 2013, 5(5): 9-24. |
SONG S J, YANG F J, CHU T L, et al. Research progress of epoxy resin toughening method and toughening agent[J]. China Printing and Packaging Study, 2013, 5(5): 9-24 (in Chinese). | |
9 | BAGHERI R, MAROUF B T, PEARSON R A. Rubber-toughened epoxies: A critical review[J]. Polymer Reviews, 2009, 49(3): 201-225. |
10 | 于妍妍, 张远, 高丽敏, 等. 基于碳纳米管薄膜的复合材料层间增韧[J]. 航空学报, 2019, 40(10): 422900. |
YU Y Y, ZHANG Y, GAO L M, et al. Toughness enhancement for interlaminar fracture composite based on carbon nanotube films[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 422900 (in Chinese). | |
11 | SHAO M Y, ZHOU G M, CHEN M D, et al. On mode I/II interlaminar fracture toughness of double-sided-loop 2D woven laminated composites[J]. Composite Structures, 2022, 286: 115311. |
12 | DZENIS Y A, RENEKER D H. Delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces: US6265333[P]. 2001-07-24. |
13 | BRUGO T M, MINAK G, ZUCCHELLI A, et al. An investigation on the fatigue based delamination of woven carbon-epoxy composite laminates reinforced with polyamide nanofibers[J]. Procedia Engineering, 2015, 109: 65-72. |
14 | DUARTE A, HERSZBERG I, PATON R. Impact resistance and tolerance of interleaved tape laminates[J]. Composite Structures, 1999, 47(1-4): 753-758. |
15 | KINLOCH A J, YUEN M L, JENKINS S D. Thermoplastic-toughened epoxy polymers[J]. Journal of Materials Science, 1994, 29(14): 3781-3790. |
16 | LOBANOV M V, GULYAEV A I, BABIN A N. Improvement of the impact and crack resistance of epoxy thermosets and thermoset-based composites with the use of thermoplastics as modifiers[J]. Polymer Science Series B, 2016, 58(1): 1-12. |
17 | 周建刚, 曾黎明, 周亚洲, 等. 环氧树脂/聚芳醚酮共混物的制备研究[J]. 粘接, 2011, 32(8): 61-63. |
ZHOU J G, ZENG L M, ZHOU Y Z, et al. Study on preparation of epoxy resins/poly (aryl ether ketone) blends[J]. Adhesion, 2011, 32(8): 61-63 (in Chinese). | |
18 | 谷国华, 张成林, 董抒华, 等. PEEK层间增韧碳纤维环氧树脂基复合材料的性能研究[J]. 塑料科技, 2022, 50(1): 1-3. |
GU G H, ZHANG C L, DONG S H, et al. Study on properties of PEEK interlayer toughened carbon fiber epoxy resin matrix composites[J]. Plastics Science and Technology, 2022, 50(1): 1-3 (in Chinese). | |
19 | 王德中. 环氧树脂的增韧改性[J]. 热固性树脂, 1992, 7(4): 55-61. |
WANG D Z. Toughening modification of epoxy resins[J]. Thermosetting Resin, 1992, 7(4): 55-61 (in Chinese). | |
20 | FRANCIS B, THOMAS S, JOSE J, et al. Hydroxyl terminated poly(ether ether ketone) with pendent methyl group toughened epoxy resin: Miscibility, morphology and mechanical properties[J]. Polymer, 2005, 46(26): 12372-12385. |
21 | WHITE J E, SILVIS H C, WINKLER M S, et al. Poly(hydroxyaminoethers): A new family of epoxy-based thermoplastics[J]. Advanced Materials, 2000, 12(23): 1791-1800. |
22 | NISHIDA H, CARVELLI V, FUJII T, et al. Quasi-static and fatigue performance of carbon fibre reinforced highly polymerized thermoplastic epoxy[J]. Composites Part B: Engineering, 2018, 144: 163-170. |
23 | CHEN D, LI J Z, YIN W X, et al. Fully recyclable and high-performance carbon fiber composites based on thermoplastic epoxy polymer[J]. Composites Communications, 2022, 35: 101330. |
24 | CHEN D, LI J Z, YUAN Y H, et al. A new strategy to improve the toughness of epoxy thermosets by introducing the thermoplastic epoxy[J]. Polymer, 2022, 240: 124518. |
25 | ODAGIRI N, KISHI H, NAKAE T. T800H/3900-2 toughened epoxy prepreg system: Toughening concept and mechanism[C]∥ Proceedings of the American Society for Composites. Sixth Technical Conference. Composite Materials, Mechanics and Processing. New York: Technomic Publishing Company, 1991: 43-52. |
26 | MARANCI A, PEAKE S L, KAMINSKI S S. Advance composites with thermoplastic particles at the interface between layers: US4957801[P]. 1990-09-18. |
27 | 中国航空工业总公司. 碳纤维复合材料层合板II型层间断裂韧性GIIC试验方法: [S]. 北京: 中国航空工业总公司, 1997. |
Aviation Industry Corporation of China. Test method for mode II interlaminar fracture toughness of carbon fiber-reinforced polymer matrix composites: [S]. Beijing: Aviation Industry Corporation of China, 1997 (in Chinese). | |
28 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料弯曲性能试验方法: [S]. 北京: 中国标准出版社, 2015. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Test method for flexural properties of orientational fiber reinforced polymer metrix composite materials: [S]. Beijing: Standards Press of China, 2015 (in Chinese). | |
29 | 中国国家标准化管理委员会. 单向纤维增强塑料层间剪切强度试验方法: [S]. 北京: 中国标准出版社, 1982. |
Standardization Administration of the People’s Republic of China. Test method for interlaminar shear strength of unidirectional fiber reinforced plastics: [S]. Beijing: China Standards Press, 1982 (in Chinese). |
/
〈 |
|
〉 |