液体火箭发动机高频纵向燃烧不稳定现象的随机性
收稿日期: 2023-08-31
修回日期: 2023-09-19
录用日期: 2023-10-30
网络出版日期: 2023-11-16
基金资助
液体火箭发动机技术重点实验室基金(614270419)
Randomness of high frequency longitudinal combustion instability in liquid rocket engines
Received date: 2023-08-31
Revised date: 2023-09-19
Accepted date: 2023-10-30
Online published: 2023-11-16
Supported by
Science and Technology Foundation of Key Liquid Rocket Engine Technology(614270419)
围绕自燃推进剂液体火箭发动机燃烧室高频纵向燃烧不稳定现象的随机性进行了深入探讨,分析了结构振动数据在表征燃烧室压力振荡方面的有效性,对比了理论声模态和实测振型,基于蒸发过程作为速率控制的假设,对该燃烧室的稳定性进行了分析,并提出了造成不同供应系统下稳定性差异的2种假设模型。研究表明:由结构振动传感器测得的是燃烧室结构对燃气压力振荡场的响应结果,后者存在一定的频率选择性和非线性;实测突频幅值分布与该频率下的理论声模态基本吻合,确定该燃烧室发生了高频一阶纵向燃烧不稳定现象;线性模型结果表明,该燃烧室具有一定的稳定性裕度,但不能解释系统2条件下燃烧不稳定现象随机出现这一现象;系统2条件下该燃烧室的稳定性恶化或不同工况间的稳定性波动幅值增加,造成部分工况点落入非线性不稳定性区间,成为潜在的不稳定工况。
汪广旭 , 杨宝娥 , 谭永华 , 高玉闪 , 李斌 . 液体火箭发动机高频纵向燃烧不稳定现象的随机性[J]. 航空学报, 2024 , 45(14) : 129485 -129485 . DOI: 10.7527/S1000-6893.2023.29485
A thorough investigation was conducted into the randomness of high-frequency longitudinal combustion instability in the combustion chamber of a hypergolic propellant liquid rocket engine. The effectiveness of structural vibration data in characterizing pressure oscillations in the combustion chamber was analyzed, and the theoretical acoustic mode and measured vibration mode compared. Based on the assumption of evaporation as the rate-control process, the stability of the combustion chamber was analyzed, and two hypothetical models proposed to interpret stability differences under different supply systems. Research has shown that: the response of the combustion chamber structure to the gas pressure oscillation field measured by the structural vibration sensor has certain frequency selectivity and nonlinearity; the measured predominant frequency amplitude distribution is basically consistent with the theoretical acoustic mode at this frequency, indicating that the combustion chamber has experienced high-frequency first-order longitudinal combustion instability; the linear model results indicate that the combustion chamber has a certain stability margin; however, it cannot explain the random occurrence of combustion instability under system 2 conditions; under system 2 conditions, the stability of the combustion chamber deteriorates or the amplitude of stability fluctuations between different operating conditions increases, causing some operating points to fall into the nonlinear instability range and become potential unstable operating conditions.
1 | SUTTON G P. Rocket propulsion elements: An introduction to the engineering of rockets[M]. 6th ed. New York: Wiley, 1992. |
2 | DRANOVSKY M L, YANG V, CULICK F, et al. Combustion instabilities in liquid rocket engines: Testing and development practices in Russia[M]. Reston.: American Institute of Aeronautics and Astronautics, 2007. |
3 | 庄逢辰. 液体火箭发动机喷雾燃烧的理论、模型及应用[M]. 长沙: 国防科技大学出版社, 1995. |
ZHUANG F C. Theory, model and application of spray combustion of liquid rocket engine[M]. Changsha: National University of Defense Technology Press, 1995 (in Chinese). | |
4 | HARRJE D T, REARDON F H. Liquid propellant rocket combustion instability. NASA SP-194 [R]. Washington, D.C.: NASA, 1972. |
5 | YANG V, ANDERSON W E. Liquid rocket engine combustion instability [M]. Reston: AIAA, 1995. |
6 | CULICK F E. Unsteady motions in combustion chambers for propulsion systems [M]. Virginia: AGAR Dograph, 2006. |
7 | 刘倩, 李敬轩, 孙纪国, 等. 高压氢氧火箭发动机推力室燃烧稳定性分析[J]. 火箭推进, 2022, 48(2): 66-75. |
LIU Q, LI J X, SUN J G, et al. Analysis on combustion stability of thrust chamber in high pressure hydrogen-oxygen rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(2): 66-75 (in Chinese). | |
8 | 杨尚荣, 周晨初, 王牧昕. 同轴离心式喷嘴热声不稳定性递归网络分析[J]. 火箭推进, 2021, 47(1): 36-42. |
YANG S R, ZHOU C C, WANG M X. Dynamic behavior of thermoacoustic instabilities of an coaxial swirl injector using recurrence network[J]. Journal of Rocket Propulsion, 2021, 47(1): 36-42 (in Chinese). | |
9 | NUSCA M, MICHAELS S. Progress in the development of a computational model for the army’s impinging stream vortex engine: AIAA-2004-3851[R]. Reston: AIAA, 2004. |
10 | NUSCA M. Modeling combustion instability in small MMH-NTO liquid rocket engines using CFD: Injector-chamber coupling:AIAA-2010-1518[R]. Reston: AIAA, 2010. |
11 | QIANG W, LIANG G Z. Numerical simulation of ignition process for the monomethyl hydrazine-nitrogen tetroxide thrusters[J]. Journal of Propulsion and Power, 2019,35(4):704-719. |
12 | CROCCO L, CHENG S I. Theory of combustion instability in liquid propellant rocket motors [M]. London: Butterworths Scientifice Publications, 1956. |
13 | CASIANO M J. Extensions to the time lag models for practical application to rocket engine stability design[D]. Harrisburg: The Pennsylvania State University, 2010. |
14 | 汪广旭, 郭灿琳, 石晓波, 等. 基于时滞模型的纵向燃烧不稳定性分析[J]. 推进技术, 2016, 37(6): 1129-1135. |
WANG G X, GUO C L, SHI X B, et al. Analysis of longitudinal combustion instability based on time lag model[J]. Journal of Propulsion Technology, 2016, 37(6): 1129-1135 (in Chinese). | |
15 | 汪广旭, 谭永华, 庄逢辰, 等. 自燃推进剂模型燃烧室高频纵向燃烧不稳定性[J]. 航空动力学报, 2020, 35(8): 1578-1585. |
WANG G X, TAN Y H, ZHUANG F C, et al. High frequency longitudinal combustion instability of modeled hypergolic propellants combustor[J]. Journal of Aerospace Power, 2020, 35(8): 1578-1585 (in Chinese). | |
16 | 汪广旭, 谭永华, 陈建华, 等. 考虑喷注流强分布的纵向稳定性建模与分析[J]. 航空学报, 2021, 42(6): 124510. |
WANG G X, TAN Y H, CHEN J H, et al. Modeling and analysis of longitudinal stability considering injection intensity distribution[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124510 (in Chinese). | |
17 | DU D H, HE E M, HUANG D Q, et al. Intense vibration mechanism analysis and vibration control technology for the combustion chamber of a liquid rocket engine [J]. Journal of Sound and Vibration, 2018, 437: 53-67. |
18 | NATANZON M S. Combustion instability [M]. Reston: AIAA, 1999. |
19 | HUZEL D K, HUANG D H, ARBIT H. Modern engineering for design of liquid-propellant rocket engines[M].Washington, D.C.: American Institute of Aeronautics and Astronautics, 1992. |
20 | CULICK F E C. Non-linear growth and limiting amplitude of acoustic oscillations in combustion chambers[J]. Combustion Science and Technology, 1971, 3(1): 1-16. |
21 | CROCCO L. Aspects of combustion stability in liquid propellant rocket motors part I: Fundamentals. low frequency instability with monopropellants[J]. Journal of the American Rocket Society, 1951, 21(6): 163-178. |
22 | CROCCO L. Aspects of combustion stability in liquid propellant rocket motors part Ⅱ: Low frequency instability with bipropellants. high frequency instability[J]. Journal of the American Rocket Society, 1952, 22(1): 7-16. |
23 | SATTELMAYER T, SCHMID M, SCHULZE M. Interaction of combustion with transverse velocity fluctuations in liquid rocket engines[J]. Journal of Propulsion and Power, 2015, 31(4): 1137-1147. |
24 | SIRIGNANO W A. A theoretical study of nonlinear combustion instability: Longitudinal mode [D]. New Jersey: Princeton University, 1964. |
25 | SUJITH R I, UNNI V R. Complex system approach to investigate and mitigate thermoacoustic instability in turbulent combustors[J]. Physics of Fluids, 2020, 32(6): 61-78. |
/
〈 |
|
〉 |