论文

典型民用飞机全机坠撞实验研究

  • 刘小川 ,
  • 惠旭龙 ,
  • 张欣玥 ,
  • 白春玉 ,
  • 闫亚斌 ,
  • 李肖成 ,
  • 牟让科
展开
  • 1.强度与结构完整性全国重点实验室,西安 710065
    2.中国飞机强度研究所 结构冲击动力学航空科技重点实验室,西安 710065
    3.陕西省飞行器振动冲击与噪声重点实验室,西安 710065
    4.西北工业大学 航空学院,西安 710072
    5.中航西飞民用飞机有限责任公司,西安 710089
.E-mail: liuxiaochuan@cae.ac.cn

收稿日期: 2023-08-15

  修回日期: 2023-10-08

  录用日期: 2023-10-24

  网络出版日期: 2023-11-09

基金资助

国家专项科研项目(2017-XX-15)

Full⁃scale crash experimental study of typical civil aircraft

  • Xiaochuan LIU ,
  • Xulong XI ,
  • Xinyue ZHANG ,
  • Chunyu BAI ,
  • Yabin YAN ,
  • Xiaocheng LI ,
  • Rangke MU
Expand
  • 1.National key Laboratory of Strength and Structural Integrity,Xi’an 710065,China
    2.Key Laboratory of Aviation Science and Technology on Structures Impact Dynamics,Aircraft Strength Research Institute of China,Xi’an 710065,China
    3.Shaanxi Province Key Laboratory of Aircraft Vibration,Impact and Noise,Xi’an 710065,China
    4.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    5.AVIC XAC Commercial Aircraft Co. ,Ltd. ,Xi’an 710089,China

Received date: 2023-08-15

  Revised date: 2023-10-08

  Accepted date: 2023-10-24

  Online published: 2023-11-09

Supported by

National Specialized Research Project(2017-XX-15)

摘要

民机全机坠撞实验是评价民用飞机适坠性的最直接手段,也是民机适坠性领域的世界性技术难题。提出全机坠撞实验高精度提升控制与高可靠投放方法,给出了结构响应、假人响应等关键物理量的测试方法,引入了分布式多目相机全场大变形连续测试方法。构建了全机坠撞动响应测试系统,使用统一时间基准触发,对坠撞后地面撞击载荷、结构加速度响应、假人响应以及飞机破坏变形进行了分析,获得了机体不同部位的响应分布规律;提出了修正的适坠性综合评估指数ICI。结果表明:全机坠撞实验测试数据完整可信,实验飞机在5.71 m/s垂直坠撞后,客舱地板下部结构变形严重,机翼的惯性效应导致中央翼区域机身上部结构产生明显变形;不同机身段的刚度差异造成该部位坠撞载荷和动响应的显著差异,刚度越大变形越小加速度响应越大;坠撞后乘员受载在安全范围内,客舱座椅结构完好,舱门可正常打开,乘员生存空间足够,乘员撤离通道畅通。实验飞机在给定状态下具有较好的适坠性,相比原始ICI指数,修正后的评估结果具有更好的工程适用性。

本文引用格式

刘小川 , 惠旭龙 , 张欣玥 , 白春玉 , 闫亚斌 , 李肖成 , 牟让科 . 典型民用飞机全机坠撞实验研究[J]. 航空学报, 2024 , 45(5) : 529664 -529664 . DOI: 10.7527/S1000-6893.2023.29664

Abstract

The crash test of civil aircraft is a worldwide technical problem, and it is the most direct means to evaluate the crashworthiness of civil aircraft. In this paper, the high precision lifting height control and high reliability delivery method of the full-scale aircraft crash test are proposed, and the testing methods of the key physical parameters such as structural response and dummy response are given. A dynamic response test system for the whole aircraft crash test was constructed, and using a unified time reference trigger method, the ground impact load, structural acceleration response, dummy response, and aircraft failure and deformation were analyzed. The response distribution rules of different parts of the aircraft were obtained. The revised comprehensive evaluation index ICI of the adaptability was put forward. The results show that the test data are complete and reliable. After the vertical crash at 5.71 m/s, the lower structure of the cabin floor is seriously deformed, and the upper structure of the fuselage in the central wing area is obviously deformed due to the inertia effect of the wing. The stiffness difference of the different fuselage segments results in significant differences in crash load and dynamic response. The higher the stiffness is, the smaller the deformation and the greater the acceleration response will be. After the crash, the load on the passengers was within safe range, the cabin seats are intact, the cabin doors can be opened normally., the living space of the passengers is sufficient, and the evacuation channel of the passengers is unblocked. Compared with the original ICI index, the revised evaluation result has better engineering applicability.

参考文献

1 刘小川. 民用飞机坠撞事故研究及启示[M]. 第一版. 北京: 航空工业出版社, 2022: 1-3.
  LIU X C. Research and enlightenment on civil aircraft crash accident[M]. 1st ed. Beijing: Aviation Industry Press, 2022: 1-3 (in Chinese).
2 LIU X C, GUO J, BAI C Y, et al. Drop test and crash simulation of a civil airplane fuselage section[J]. Chinese Journal of Aeronautics201528 (2): 447-456.
3 LOGUE T V, MCGUIRE R J, REINHARDT J W, et al. Vertical drop test of a narrow-body fuselage section with overhead stowage bins and auxiliary fuel tank system on board: DOT/FAA/CT-94/116 [R]. 1995.
4 LE P F, CARCIENTA R. A320 fuselage section vertical drop test, Part 2: test result: S955776/2[R]. 1995.
5 KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Summary of vertical drop tests of YS-11 transport fuselage sections[C]∥ World Aviation Congress, 2004.
6 ABRAMOWITZ A, VU T, SMITH T. Vertical drop test of a narrow-body transport fuselage section with a conformable auxiliary fuel tank onboard[R]. 2000.
7 FASANELLA E L, JACKSON K E. Crash simulation of a vertical drop test of a B737 fuselage section with auxiliary fuel tank: 23681-0001[R]. 2002.
8 JACKSON K E, FASANELLA E L. Crash simulation of vertical drop tests of two Boeing 737 fuselage sections[R]. 2002.
9 GYIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences201898:106-123.
10 RASSAIAN M. Virtual test and simulation[C]∥ AIAA Complex Aerospace Systems Exchange. 2013: 1-25.
11 HACHENBERG D, LAVINGE V, MAHE M. Crashworthiness of fuselage hybrid structure[C]∥ 8th Triennial International Aircraft Fire and Cabin Safety Research Conference. 2016: 1-16.
12 LIU X C, XI X L, BAI C Y, et al. Dynamic response and failure mechanism of Ti-6AL-4V hi-lock bolts under combined tensile-shear loading[J]. International Journal of Impact Engineering2019131: 140-151.
13 葛宇静, 白春玉, 惠旭龙, 等. 材料中应变率力学性能测试数据处理与表征方法[J]. 测控技术2022(5):41.
  GE Y J, BAI C Y, XI X L, et al. Test data processing and characterization methods for material mechanical properties under intermediate strain rates[J]. Measurement & Control Technology2022(5):41 (in Chinese).
14 REN T, WANG C, HOU B, et al. Analytical models for characterizing coupling effects of loading state and loading rate on ultimate strength and yield strength of riveted joints[J]. International Journal of Solids and Structures2023279: 112387.
15 RAYHAN S B, PU X. Crashworthiness study of a newly developed civil aircraft fuselage section with auxiliary fuel tank reinforced with composite foam[J]. Aerospace202310(3): 314.
16 RAYHAN S B, PU X. A case study on the effect of uncertain impacts of a civil aircraft fuselage section with auxiliary fuel tank[C]∥ ASME International Mechanical Engineering Congress and Exposition. 202185581: V004T04A012.
17 冯振宇, 程坤, 赵一帆, 等. 运输类飞机典型货舱地板下部结构冲击吸能特性[J]. 航空学报201940(9): 222907.
  FENG Z Y, CHENG K, ZHAO Y F, et al. Energy-absorbing characteristics of typical sub-cargo fuselage section of a transport category aircraft[J]. Acta Aeronautica et Astronautica Sinica201940(9): 222907 (in Chinese).
18 张欣玥, 惠旭龙, 葛宇静, 等. 中低速压缩加载下不同截面构型复合材料薄壁结构吸能特性及失效分析[J]. 爆炸与冲击202242(6): 36-49.
  ZHANG X Y, XI X L, GE Y J, et al. Energy absorption characteristics and failure analysis of composite thinwalled structures with different cross-sectional configurations under medium- and low-speed compression loading[J]. Explosion and Shock Waves202242(6):36-49 (in Chinese).
19 葛宇静, 白春玉, 舒挽, 等. 一种复合材料结构的坠撞吸能特性分析[J]. 飞行器强度研究2021(1): 50-55.
  GE Y J, BAI C Y, SHU W, et al. Analysis on the crash energy absorption characteristics of a composite structure[J]. Structure and Strength Research2021(1): 50-55 (in Chinese).
20 白佳瑶, 黄金红, 侯兵, 等. 不同压溃速度下复合材料圆管吸能特性试验及数值模拟研究[J]. 航空科学技术202132(12):66-73.
  BAI J Y, HUANG J H, HOU B,et al. On the energy absorption properties of composite circular tubes at different impact velocities[J]. Aeronautical Science & Technology202132(12): 66-73 (in Chinese).
21 冯振宇, 刘旭, 林岚辉, 等. 安全带对航空座椅及乘员冲击响应的影响[J]. 航空学报202243(1): 224808.
  FENG Z Y, LIU X, LIN L H, et al. Impact of seatbelts on impact characteristics of aviation seats and occupants[J]. Acta Aeronautica et Astronautica Sinica202243(01): 224808 (in Chinese).
22 解江, 马士成, 贺永龙, 等. 水平冲击下头排乘员损伤及保护姿势研究[J]. 航空学报202041(5): 223489.
  XIE J, MA S C, HE Y L, et al Research on injury and brace position for front-row occupant under horizontal impact [J]. Acta Aeronautica et Astronautica Sinica202041(5): 223489 (in Chinese).
23 杨欢, 刘小川, 白春玉, 等. 典型航空座椅/乘员系统水平冲击特性实验[J]. 航空学报202243(6): 526238.
  YANG H, LIU X C, BAI C Y, et al. Experment on longitudinal dynamic characteristics of typical aircraft seat/occupant system[J]. Acta Aeronautica et Astronautica Sinica202243(6): 526238 (in Chinese).
24 杨欢, 牟让科, 王亚锋, 等. 基于刚性座椅的航空可替代座椅垫动态冲击试验方法研究[J]. 科学技术与工程201717(19): 290-294.
  YANG H, MU R K, WANG Y F, et al. Research on dynamic impact test methodology of the aircraft replaceable seat cushion based on rigid seat[J]. Science Technology and Engineering201717(19): 290-294 (in Chinese).
25 TANG H, ZHU S H, LIU X C, et al. Impact of crash environments on crashworthiness of fuselage section [J]. Transactions of Nanjing University of Aeronautics and Astronautics202239(S1): 1-8.
26 张欣玥, 惠旭龙, 刘小川, 等. 典型金属民机机身结构坠撞特性试验[J]. 航空学报202243(6): 526234.
  ZHANG X Y, XI X L, LIU X C, et al. Experimental study on crash characteristics of typical metal civil aircraft fuselage structure[J]. Acta Aeronautica et Astronautica Sinica202243(6): 526234 (in Chinese).
27 刘小川, 张欣玥, 惠旭龙, 等. 结构修理对民机机身耐撞性的影响[J]. 航空学报202344(10): 227517.
  LIU X C, ZHANG X Y, XI X L, et al. Study on the influence of structural repair on the crashworthiness of civil aircraft fuselage [J]. Acta Aeronautica et Astronautica Sinica202344(10): 227517 (in Chinese).
28 RAYHAN S B, PU X, XI X L. Modeling of fuel in aircraft crashworthiness study with auxiliary fuel tank[J]. International Journal of Impact Engineering2023173: 104449.
29 刘小川, 白春玉, 惠旭龙, 等. 民机机身结构耐撞性研究的进展与挑战[J]. 固体力学学报202041(4): 293-323.
  LIU X C, BAI C Y, XI X L, et al Progress and Challenge of Research on Crashworthiness of civil Airplane Fuselage Structures[J]. Chinese Journal of Solid Mechanics202041(4): 293-323 (in Chinese).
30 刘小川, 王彬文, 白春玉, 等. 航空结构冲击动力学技术的发展与展望[J]. 航空科学技术202031(3): 1-14.
  LIU X C, WANG B W, BAI C Y, et al. Progress and prospect of aviation structure impact dynamics[J]. Aeronautical Science & Technology202031(3): 1-14 (in Chinese).
31 牟浩蕾, 解江, 冯振宇. 民机机身结构适坠性研究[J].交通运输工程学报202020(3): 17-39.
  MU H L, XIE J, FENG Z Y. Research on crashworthiness of civil aircraft fuselage structures[J]. Journal of Traffic and Transportation Engineering202020(3): 17-39 (in Chinese).
32 REED W H, ROBERTSON S H, WEINBERG L W T, et al. Full-scale dynamic crash test of a Lockheed Constellation model 1649 aircraft: FAA-ADS-38 [R]. 1965.
33 REED W H, ROBERTSON S H, WEINBERG L W T, et al. Full-scale dynamic crash test of a Douglas DC-7 aircraft: FAA-ADS-37[R]. 1965.
34 ABRAMOWUTZ A, INGRAHAM P A, MCGUIRE R. Vertical drop test of a shorts 3-30 airplane[M]. 1999.
35 JACKSON K E, FASANELLA E L. Development of an LS-DYNA Model of an ATR42-300 Aircraft for Crash Simulation[C]∥ ICRASH-International Crashworthiness Conference. 2004:1-15.
36 Channel Discovery. Curiosity: the plane crash 2012. [EB/OL]. .
37 Littell J D. A summary of airframe results from a Fokker F28 full-scale crash test[R]. 2020.
38 潘兵, 吴大方, 夏勇. 数字图像相关方法中散斑图的质量评价研究[J]. 实验力学201025(2): 120-129.
  PAN B, WU D F, WU Y. Study of speckle pattern quality assessment used in digital image correlation[J]. Journal of Experimental Mechanics201025(2): 120-129 (in Chinese).
39 徐向阳, 陈振宁, 黄正, 等. 大型混凝土全场变形测量中数字散斑场的制作和应用[J]. 东南大学学报(自然科学版)201848(5): 896-902.
  XU X Y, CHEN Z N, HUANG Z, et al. Fabrication and application of digital speckle pattern in full-field measurement of deformed large concrete beams[J]. Journal of Southeast University (National Science Edition)201848(5): 896-902 (in Chinese).
40 LIU Y, GE Z, YUAN Y, et al. Wing deformation measurement using the stereo-vision methods in the presence of camera movements[J]. Aerospace Science and Technology2021119: 107161.
41 于起峰, 尚洋. 摄像测量学原理与应用研究[M].北京:科学出版社, 2009: 22-31.
  YU Q F, SHANG Y. Videometrics: Principles and researches[M]. Beijing: Science Press, 2009: 22-31 (in Chinese).
42 中国民用航空局. 中国民用航空规章: 第25部-运输类飞机适航标准: CCAR-25 [S]. 北京: 中国民用航空局, 2011: 68-69.
  Civil Aviation Administration of China. China civil aviation regulation: 25-airworthiness standard of transport aircraft: CCAR-25-R4 [S]. Beijing: Civil Aviation Administration of China, 2011: 68-69 (in Chinese).
43 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报201334(9): 2130-2140.
  LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautics Sinica201334(9): 2130-2140 (in Chinese).
文章导航

/