材料工程与机械制造

TLP扩散焊接工艺参数对GH5188高温合金接头微观组织及力学性能的影响

  • 滕俊飞 ,
  • 李家豪 ,
  • 周惠焱 ,
  • 伍大为 ,
  • 徐海涛 ,
  • 林铁松 ,
  • 黄永德
展开
  • 1.中国航空制造技术研究院 航空焊接与连接航空科技重点实验室,北京 100024
    2.南昌航空大学 航空制造工程学院,南昌 330063
    3.浙江工业大学 化工机械设计研究所,杭州 310014
    4.哈尔滨工业大学 先进焊接与连接国家重点实验室,哈尔滨 150001
.E-mail: huangydhm@nchu.edu.cn

收稿日期: 2023-06-20

  修回日期: 2023-07-15

  录用日期: 2023-10-10

  网络出版日期: 2023-11-09

基金资助

国防科技重大专项(J2019-VII-0012);国家自然科学基金(52065048);先进焊接与连接国家重点实验室开放课题(AWJ-22Z02)

Effect of TLP diffusion welding process parameters on microstructure and mechanical properties of GH5188 superalloy joint

  • Junfei TENG ,
  • Jiahao LI ,
  • Huiyan ZHOU ,
  • Dawei WU ,
  • Haitao XU ,
  • Tiesong LIN ,
  • Yongde HUANG
Expand
  • 1.Aeronautical Key Laboratory for Welding and Joining Technologies,AVIC Manufacturing Technology Institute,Beijing 100024,China
    2.School of Aeronautical Manufacturing Engineering,Nanchang Hangkong University,Nanchang 330063,China
    3.Institute of Process Equipment and Control Engineering,Zhejiang University of Technology,Hangzhou 310014,China
    4.State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,Harbin 150001,China

Received date: 2023-06-20

  Revised date: 2023-07-15

  Accepted date: 2023-10-10

  Online published: 2023-11-09

Supported by

National Defense Science and Technology Major Project(J2019-VII-0012);National Natural Science Foundation of China(52065048);Project supported by the State Key Laboratory of Advanced Welding and Joining(AWJ-22Z02)

摘要

采用自主设计的KCo8钴基中间层对GH5188高温合金进行瞬间液相扩散连接,借助扫描电子显微镜(SEM)、能谱仪(EDS)及电子探针(EPMA)分析评估了瞬间液相扩散焊接工艺参数对接头微观组织的影响,探究了焊接工艺对接头的影响机理,采用电子万能试验机检测接头的力学性能进行评估并分析其断裂机理。结果表明,典型的接头主要由3种区域构成:GH5188合金(母材),M5B3、M3B2等析出相存在的扩散区和钴基固溶体构成的等温凝固区。扩散区的扩散行为与焊接工艺有关,随着焊接温度的升高或保温时间的延长,扩散区析出相的密集程度逐渐减小。最佳工艺参数为焊接温度1 180 ℃,保温60 min,接头平均抗拉强度为1 033 MPa,达到母材性能的96.5%,且断裂于母材,满足工程背景需求,并为GH5188 TLP扩散焊的广泛应用提供参考。

本文引用格式

滕俊飞 , 李家豪 , 周惠焱 , 伍大为 , 徐海涛 , 林铁松 , 黄永德 . TLP扩散焊接工艺参数对GH5188高温合金接头微观组织及力学性能的影响[J]. 航空学报, 2024 , 45(8) : 429205 -429205 . DOI: 10.7527/S1000-6893.2023.29205

Abstract

The transient liquid phase diffusion bonding of GH5188 superalloy is carried out by using self-designed KCo8 cobalt-based interlayer. The effects of transient liquid phase diffusion welding process parameters on the microstructure of the joint are evaluated by means of Scanning Electron Microscope (SEM), Energy Dispersive Spectrometer (EDS) and Electron Probe Micro-Analyzer (EPMA). The influence mechanism of welding process on the joint is explored. Moreover, the mechanical properties of the joint are evaluated by electronic universal testing machine, and the fracture mechanism is analyzed. The results show that the typical joint is mainly composed of three regions: GH5188 alloy (Base Metal), diffusion zone of precipitated phases such as M5B3 and M3B2, and isothermal solidification zone composed of cobalt-based solid solution. The diffusion behavior of the diffusion zone is related to the welding process. With the increase of the welding temperature or the prolongation of the holding time, the density of the precipitated phase in the diffusion zone gradually decreases. The optimum process parameters are welding temperature of 1 180 ℃ and holding time of 60 min. The average tensile strength of the joint is 1 033 MPa, which is 96.5% of the base metal, and is broken in the base metal, meeting the needs of the engineering background. This study provides a reference for the wide application of GH5188 TLP diffusion welding.

参考文献

1 LIU D H, CHAI H R, YANG L, et al. Study on the dynamic recrystallization mechanisms of GH5188 superalloy during hot compression deformation[J]. Journal of Alloys and Compounds2022895(2): 162565.
2 WEI W, XIAO J C, WANG C F, et al. Hierarchical microstructure and enhanced mechanical properties of SLM-fabricated GH5188 Co-superalloy[J]. Materials Science and Engineering: A2022831: 142276.
3 石文展. GH5188合金电流辅助扩散连接/气胀成形性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 3-9.
  SHI W Z. Study on current-assisted diffusion bonding / gas bulging forming properties of GH5188 alloy[D]. Harbin: Harbin Institute of Technology, 2020: 3-9 (in Chinese).
4 张慧, 江河, 董建新. 重型燃气轮机燃烧室用高温合金研究进展[J]. 兵器材料科学与工程202144(6): 148-156.
  ZHANG H, JIANG H, DONG J X. Research progress of superalloys for combustion chamber of heavy gas turbine[J]. Ordnance Material Science and Engineering202144(6): 148-156 (in Chinese).
5 任少飞, 张健杨, 张新房,等. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报202258(2): 129-140.
  REN S F, ZHANG J Y, ZHANG X F, et al. Interface microstructure evolution and healing mechanism during plastic deformation bonding of new Ni-Co based superalloys[J]. Acta Metallurgica Sinica202258(2): 129-140 (in Chinese).
6 李宏佳. 燃烧室薄壁结构焊接变形控制工艺研究[D].哈尔滨: 哈尔滨工业大学, 2019: 1-4.
  LI H J. Research on welding deformation control technology of combustion chamber thin-walled structure[D]. Harbin: Harbin Institute of Technology, 2019: 1-4 (in Chinese).
7 闾川阳, 陈刚强, 唐夏焘, 等. BNi71CrSi钎料钎焊Hastelloy N 合金的接头组织和性能[J]. 航空学报202243(2): 625040.
  LU C Y, CHEN G Q, TANG X T, et al. Microstructure and mechanical properties of Hastelloy N superalloy joints brazed using BNi71CrSi filler alloy[J]. Acta Aeronautica et Astronautica Sinica202243(2): 625040 (in Chinese).
8 AMIRI D, KAMYABI-GOL A, SAJJADI S A. Standard heat treatment effects on TLP bonded IN-738LC superalloy using BNi-9 filler: An approach to make an ideal joint[J]. Transactions of Nonferrous Metals Society of China202232(1): 192-205.
9 SHENG N C, LIU J, JIN T, et al. Precipitation behaviors in the diffusion affected zone of TLP bonded single crystal superalloy joint[J]. Journal of Materials Science & Technology201531(2): 129-134.
10 AMIRI D, SAJJADI S A, KAMYABI-GOL A. Pre- and post-TLP bond solution treatments: Effects on the microstructure and mechanical properties of GTD-111 superalloy[J]. Journal of Manufacturing Processes202057: 36-47.
11 王健, 杨晓雨, 李卓霖, 等. 细晶铝合金低温超声辅助TLP钎焊工艺及机理[J]. 航空学报202243(12): 426236.
  WANG J, YANG X Y, LI Z L, et al. Process and mechanism of low-temperature ultrasonic assisted TLP soldering of fine grain aluminum alloy[J]. Acta Aeronautica et Astronautica Sinica202243(12): 426236 (in Chinese).
12 LIU J D, JIN T, ZHAO N R, et al. Effect of transient liquid phase (TLP) bonding on the ductility of a Ni-base single crystal superalloy in a stress rupture test[J]. Materials Characterization200859(1): 68-73.
13 JIAO Y J, SHENG G M, ZHANG Y T, et al. Transient liquid phase bonding of Inconel 625 with Mar-M247 superalloy using Ni–Cr–B interlayer: Microstructure and mechanical properties[J]. Materials Science and Engineering: A2022831: 142204.
14 LI S W, LI J L, SHI J M, et al. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy[J]. Journal of Materials Science & Technology202296: 140-150.
15 NASAJPOUR A, FARZADI A, MIRALEHI S E. Effect of diffusion brazing time on microstructure, isothermal solidification completion and microhardness distribution during joining of Nicrofer 5520 superalloy using a liquated Ni–Cr–B interlayer[J]. Journal of Materials Research and Technology202221: 1212-1222
16 KIM J K, PARK H J, SHIM D N, et al. Effect of bonding parameters on microstructural characteristics during TLP bonding of directionally solidified Ni-based superalloy[J]. Journal of Manufacturing Processes201730: 208-216.
17 BAKHTIARI R, EKRAMI A, KHAN T I. The effect of TLP bonding temperature on microstructural and mechanical property of joints made using FSX-414 superalloy[J]. Materials Science and Engineering: A2012546: 291-300.
18 林雪琴. GH5188箔材的组织与性能研究[D]. 哈尔滨:哈尔滨工业大学, 2011: 5-11.
  LIN X Q. Study on the microstructure and properties of GH5188 foil[D]. Harbin: Harbin Institute of Technology, 2011: 5-11 (in Chinese).
19 GHAHFEROKHI A I, KASIRI-ASGARANI M, EBRAHIMI-KAHRIZSANGI R, et al. Effect of bonding temperature and bonding time on microstructure of dissimilar transient liquid phase bonding of GTD111/BNi-2/IN718 system[J]. Journal of Materials Research and Technology202221: 2178-2190.
20 ZHANG H Q, XUE J L, YU Y, et al. Boride evolutionary behavior and mechanism in the TLP repaired IN738 superalloy with crack-like defects[J]. Journal of Alloys and Compounds2022909: 164692.
21 TAZIKEH H, MIRSALEHI S E, SHAMSIPUR A. Relationship of isothermal solidification completion and precipitate formation with mechanical properties of Inconel 939 joints vacuum TLP bonded by an amorphous Ni-Cr-Fe-Si-B filler alloy[J]. Journal of Materials Research and Technology202218: 4762-4774.
22 张赛赛. 钴基高温合金DZ40M的TLP扩散焊工艺及机理研究[D]. 哈尔滨:哈尔滨工业大学, 2020: 3-5.
  ZHANG S S. Research on process and mechanism of TLP bonded Cobalt-based superalloy DZ40M[D]. Harbin: Harbin Institute of Technology, 2020: 3-5 (in Chinese).
23 LIN T S, LI H X, HE P, et al. Effect of bonding parameters on microstructures and properties during TLP bonding of Ni-based superalloy[J]. Transactions of Nonferrous Metals Society of China201222(9): 2112-2117.
24 POURANVARI M, EKRAMI A, KOKABI A H. Diffusion induced isothermal solidification during transient liquid phase bonding of cast IN718 superalloy[J]. Canadian Metallurgical Quarterly201453(1): 38-46.
25 HE Y M, XIAO F, SUN Y, et al. Tailoring microstructure and mechanical performance of Hastelloy N Hastelloy N superalloy joint through modifying brazing processing parameters and post thermal exposure[J]. Materials Characterization2021173: 110947.
文章导航

/