材料工程与机械制造

刀具偏心跳动下侧铣硬脆材料的瞬时铣削力模型

  • 马廉洁 ,
  • 杜文豪 ,
  • 赵镇 ,
  • 邱喆
展开
  • 1.东北大学 机械工程与自动化学院,沈阳 110819
    2.东北大学秦皇岛分校 控制工程学院,秦皇岛 066004
.E-mail: mlj@mail.neu.edu.cn

收稿日期: 2023-04-23

  修回日期: 2023-05-30

  录用日期: 2023-09-19

  网络出版日期: 2023-11-07

基金资助

国家自然科学基金(51975113)

Instantaneous milling force model of side milling hard and brittle materials in the state of tool eccentricity and runout

  • Lianjie MA ,
  • Wenhao DU ,
  • Zhen ZHAO ,
  • Zhe QIU
Expand
  • 1.School of Mechanical Engineering & Automation,Northeastern University,Shenyang 110819,China
    2.School of Control Engineering,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China

Received date: 2023-04-23

  Revised date: 2023-05-30

  Accepted date: 2023-09-19

  Online published: 2023-11-07

Supported by

National Natural Science Foundation of China(51975113)

摘要

以侧铣可加工微晶陶瓷为对象,建立了瞬时整体铣削力模型,研究了刀具偏心跳动状态下立铣刀侧刃铣削瞬时铣削力。通过铣削刀具与工件的次摆线运动,获得了其瞬时切削厚度、瞬时切削面积。通过线性搜索法确定了刀具偏心量和偏心角的最优解,利用一维搜索算法进行了瞬时铣削力作用点的精确求解,并以刀具偏心跳动状态下的瞬时转角予以表达。以Martellotti模型为基础,建立了新的瞬时铣削力模型。以最小二乘法进行了瞬时铣削力模型系数辨识。并从铣削力作用点(瞬时转角)视角,研究了瞬时铣削力的变化特性。铣削实验验证结果表明,铣削力模型预测值与实验值吻合程度较高,平均相对误差不超过8%,该瞬时铣削力模型具有较高的预测精度。

本文引用格式

马廉洁 , 杜文豪 , 赵镇 , 邱喆 . 刀具偏心跳动下侧铣硬脆材料的瞬时铣削力模型[J]. 航空学报, 2024 , 45(4) : 428925 -428925 . DOI: 10.7527/S1000-6893.2023.28925

Abstract

Taking side milling machinable microcrystalline ceramics as object, an instantaneous overall milling force model was built. The instantaneous milling force of end milling cutter side edge milling was studied under the condition of tool eccentricity and runout. The instantaneous cutting thickness and area were obtained through the hypocycloidal motion between the milling tool and the workpiece. The optimal solution for tool eccentricity and eccentricity angle was determined through linear search method. The precise solution of the instantaneous milling force action point was obtained using a one-dimensional search algorithm and expressed as the instantaneous rotation angle under the condition of tool eccentricity and jumping. A new instantaneous milling force model was established based on the Martellotti model. The instantaneous milling force model coefficients were identified using the least squares method. And from the perspective of the milling force action point (instantaneous rotation angle), the variation characteristics of instantaneous milling force were studied. The validation results of milling experiments indicate that the predicted values of the milling force model are in good agreement with the experimental values, with an average relative error not exceeding 8%. Therefore, the instantaneous milling force model demonstrates high prediction accuracy.

参考文献

1 MA L, GONG Y, CHEN X. Study on surface roughness model and surface forming mechanism of ceramics in quick point grinding[J]. International Journal of Machine Tools and Manufacture201477: 82-92.
2 万敏, 杜宇轩, 张卫红, 等. 单向CFRP螺旋铣削力建模[J]. 航空学报202142(10): 524134.
  WAN M, DU Y X, ZHANG W H, et al. Cutting force modeling in helical milling process of unidirectional CFRP[J]. Acta Aeronautica et Astronautica Sinica202142(10): 524134 (in Chinese).
3 SUN Y, JIN L, GONG Y, et al. Experimental evaluation of surface generation and force time-varying characteristics of curvilinear grooved micro end mills fabricated by EDM[J]. Journal of Manufacturing Processes202273(1): 799-814.
4 马廉洁, 李红双. 脆性材料机械加工表面粗糙度模型的研究进展[J]. 中国机械工程202233(7): 757-768.
  MA L J, LI H S. Research progress on surface roughness model of brittle materials[J]. China Mechanical Engineering202233(7): 757-768 (in Chinese).
5 RIVIèRE-LORPHèVRE E, FILIPPI E. Mechanistic cutting force model parameters evaluation in milling taking cutter radial runout into account[J]. The International Journal of Advanced Manufacturing Technology200945(1-2): 8-15.
6 KLINE W A, DEVOR R E. The effect of runout on cutting geometry and forces in end milling[J]. International Journal of Machine Tool Design and Research198323(2-3): 123-140.
7 SPIEWAK S A. Analytical modeling of cutting point trajectories in milling[J]. Journal of Engineering for Industry1994116(4): 440-448.
8 BAO W Y, TANSEL I N. Modeling micro-end-milling operations. Part I: analytical cutting force model[J]. International Journal of Machine Tools and Manufacture200040(15): 2155-2173.
9 BAO W Y, TANSEL I N. Modeling micro-end-milling operations. Part II: tool run-out[J]. International Journal of Machine Tools and Manufacture200040(15): 2175-2192.
10 ZHENG F, HAN X, LIN H, et al. Research on the cutting dynamics for face-milling of spiral bevel gears[J]. Mechanical Systems and Signal Processing2021153: 107488.
11 SUTHERLAND J W, DEVOR R E. An improved method for cutting force and surface error prediction in flexible end milling systems[J]. Journal of Engineering for Industry1986108(4): 269-279.
12 WAN M, ZHANG W, QIN G, et al. Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills[J]. International Journal of Machine Tools and Manufacture200747(11): 1767-1776.
13 ZHANG Z, LIANG Z, LUO M, et al. A general method for calibration of milling force coefficients and cutter runout parameters simultaneously for helical end milling[J]. The International Journal of Advanced Manufacturing Technology2021116(9-10): 2989-2997.
14 WANG C, DING P, HUANG X, et al. A method for predicting ball-end cutter milling force and its probabilistic characteristics[J]. Mechanics Based Design of Structures and Machines20217: 1-18.
15 ZHANG X, YU T, WANG W. Cutting forces modeling for micro flat end milling by considering tool run-out and bottom edge cutting effect[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture2019233(2): 470-485.
16 刘涛, 张丽芳. 基于改进粒子群优化算法的变截面涡旋盘瞬时铣削力模型参数求解[J]. 中国机械工程202031(24): 2943-2949.
  LIU T, ZHANG L F. Parameter solution of instantaneous milling force model of variable cross-section scroll plates based on improved PSO algorithm[J]. China Mechanical Engineering202031(24): 2943-2949 (in Chinese).
17 MARTELLOTTI M E. An Analysis of the Milling Process[J]. Journal of Fluids Engineering194163(8): 677-695.
18 DING H, ZOU B, YANG J, et al. Instantaneous milling force prediction and valuation of end milling based on friction angle in orthogonal cutting[J]. The International Journal of Advanced Manufacturing Technology2021116(3-4): 1341-1355.
19 成群林, 柯映林, 董辉跃. 航空铝合金铣削加工中切削力的数值模拟研究[J]. 航空学报200627(4): 724-727.
  CHENG Q L, KE Y L, DONG H Y. Numerical simulation study on milling force for aerospace aluminum Alloy[J]. Acta Aeronautica et Astronautica Sinica200627(4): 724-727 (in Chinese).
20 BIAN R, FERRARIS E, QIAN J, et al. Micro-milling of fully sintered ZrO2 ceramics with diamond coated end mills[J]. Key Engineering Materials2012523-524: 87-92.
21 DAI Y, ZHENG X, CHEN X, et al. A prediction model of milling force for aviation 7050 aluminum alloy based on improved RBF neural network[J]. The International Journal of Advanced Manufacturing Technology2020110(9-10): 2493-2501.
文章导航

/