电子电气工程与控制

基于事件驱动的航天器星下点轨迹维持控制

  • 宁铠 ,
  • 吴宝林
展开
  • 哈尔滨工业大学 航天学院,哈尔滨 150000
.E-mail: wubaolin@hit.edu.cn

收稿日期: 2023-08-05

  修回日期: 2023-08-29

  录用日期: 2023-10-31

  网络出版日期: 2023-11-01

基金资助

国家自然科学基金(62188101)

Event-triggered-based orbit maintenance control for spacecraft subsatellite point control

  • Kai NING ,
  • Baolin WU
Expand
  • School of Astronautics,Harbin Institute of Technology,Harbin 150000,China

Received date: 2023-08-05

  Revised date: 2023-08-29

  Accepted date: 2023-10-31

  Online published: 2023-11-01

Supported by

National Natural Science Foundation of China(62188101)

摘要

针对超低轨航天器高精度自主轨道维持问题,考虑通信受限和大气阻力摄动的影响,提出基于事件驱动机制的模糊自适应控制方法。首先,建立基于相对平均轨道根数的航天器轨道动力学模型,采用模糊自适应控制方法估计大气阻力带来的扰动项。然后,在控制器细胞卫星一侧采用事件驱动机制,减少控制器细胞卫星和电推力器细胞卫星之间的通信负担和计算量,并且保证在一定时间内控制推力保持不变,以延长电推力器细胞卫星寿命。随后,提出基于事件驱动的模糊自适应轨道控制算法来维持星下点轨迹。最后,通过仿真验证了所提出算法的有效性。

本文引用格式

宁铠 , 吴宝林 . 基于事件驱动的航天器星下点轨迹维持控制[J]. 航空学报, 2024 , 45(10) : 329412 -329412 . DOI: 10.7527/S1000-6893.2023.29412

Abstract

A fuzzy adaptive control method based on event-triggered mechanism is proposed for high precision autonomous orbit maintenance of ultra-low orbit spacecraft with limited communication and atmosphere drag perturbation. Firstly, a spacecraft orbit dynamics model is established based on the relative average orbital elements. The fuzzy adaptive control method is used to estimate the nonlinear function caused by atmosphere drag. Then, an event-triggered mechanism placed on the controller cellular satellite is proposed to reduce the communication burden and computation. Meanwhile, constant control thrust over a certain period of time can be ensured which can extend the lifetime of electric thrust cellular satellite. An event-triggered-based fuzzy adaptive autonomous orbit maintenance controller is designed for maintaining subsatellite point trajectory. Finally, the effectiveness of the proposed control algorithm is verified through simulation results.

参考文献

1 胡凌云, 张立华, 程晓丽, 等. 超低轨航天器气动设计与计算方法探讨[J]. 航天器工程201625(1): 10-18.
  HU L Y, ZHANG L H, CHENG X L, et al. Method of aerodynamic design and calculation for ultra-LEO spacecraft[J]. Spacecraft Engineering201625(1): 10-18 (in Chinese).
2 易彬, 秦显平, 谷德峰, 等. 多机构比对融合的分布式InSAR编队星间基线确定[J]. 航空学报201839(1): 321187.
  YI B, QIN X P, GU D F, et al. Baseline determination for distributed InSAR satellite system using inter-agency comparison and fusion[J]. Acta Aeronautica et Astronautica Sinica201839(1): 321187 (in Chinese).
3 K?NIGSMANN H J, COLLINS J T, DAWSON S, et al. Autonomous orbit maintenance system[J]. Acta Astronautica199639(9/10/11/12): 977-985.
4 朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行器技术[J]. 航空学报202243(7): 025556.
  ZHU B J, YANG X X, ZONG J A, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica202243(7): 025556 (in Chinese).
5 吉莉, 刘昆, 项军华. 内编队重力场测量卫星全推力姿轨一体化控制研究[J]. 中国科学: 技术科学201242(2): 220-229.
  JI L, LIU K, XIANG J H. Research on integrated control of full thrust attitude and orbit of internal formation gravity field measurement satellites[J]. Scientia Sinica (Technologica)201242(2): 220-229 (in Chinese).
6 KOZUBSKII K N, MURASHKO V M, RYLOV Y P, et al. Stationary plasma thrusters operate in space[J]. Plasma Physics Reports200329(3): 251-266.
7 ANZEL B. Stationkeeping the Hughes HS 702 satellite with a xenon ion propulsion system[C]∥Proceedings of the 49th International Astronautical Congress. Melbourne: IAF, 1998: 105-110.
8 GARULLI A, GIANNITRAPANI A, LEOMANNI M, et al. Autonomous low-earth-orbit station-keeping with electric propulsion[J]. Journal of Guidance, Control, and Dynamics201134(6): 1683-1693.
9 莫凡, 丁建钊, 任放, 等. 一种低轨遥感卫星自主轨道控制方法[J]. 航天器工程202029(3): 12-17.
  MO F, DING J Z, REN F, et al. An autonomous orbit control method of low orbit remote sensing satellite[J]. Spacecraft Engineering202029(3): 12-17 (in Chinese).
10 LEOMANNI M, GARULLI A, GIANNITRAPANI A, et al. An adaptive groundtrack maintenance scheme for spacecraft with electric propulsion[J]. Acta Astronautica2020167: 460-466.
11 黄攀峰, 常海涛, 鹿振宇, 等. 面向在轨服务的可重构细胞卫星关键技术与展望[J]. 宇航学报201637(1): 1-10.
  HUANG P F, CHANG H T, LU Z Y, et al. Key techniques of on-orbit service-oriented reconfigurable cellularized satellite and its prospects[J]. Journal of Astronautics201637(1): 1-10 (in Chinese).
12 WEISE J, BRIE? K, ADOMEIT A, et al. An intelligent building blocks concept for on-orbit-satellite servicing[C]∥Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space. Paris: ESA, 2012.
13 CHANG H T, HUANG P F, ZHANG Y Z, et al. Distributed control allocation for spacecraft attitude takeover control via cellular space robot[J]. Journal of Guidance, Control, and Dynamics201841(11): 2499-2506.
14 TABUADA P. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control200752(9): 1680-1685.
15 LUNZE J, LEHMANN D. A state-feedback approach to event-based control[J]. Automatica201046(1): 211-215.
16 沈斌斌, 王之伟, 池庆国, 等. 事件驱动控制系统下的新型触发机制[J]. 控制工程202229(8): 1429-1436.
  SHEN B B, WANG Z W, CHI Q G, et al. New triggering mechanism for event-driven control system[J]. Control Engineering of China202229(8): 1429-1436 (in Chinese).
17 林子杰, 陆国平, 吕旺, 等. 基于事件驱动的航天器姿态自适应跟踪控制[J]. 航天控制202139(1): 32-39.
  LIN Z J, LU G P, LV W, et al. Adaptive event-triggered control for spacecraft attitude tracking[J]. Aerospace Control202139(1): 32-39 (in Chinese).
18 WANG X L, LIU J P, LAM H K, et al. Fuzzy-model-based dynamic event-triggered control in sensor-to-controller channel for nonlinear strict-feedback system via command filter[J]. IEEE Transactions on Fuzzy Systems202331(8): 2761-2772.
19 王涛, 康宇, 李鹏飞. 基于自适应事件触发分布式模型预测控制的多智能体系统跟踪一致性[J]. 中国科学: 技术科学202353(11): 1885-1894.
  WANG T, KANG Y, LI P F. Adaptive event-triggered distributed model predictive control for tracking consensus of multiagent systems[J]. Scientia Sinica (Technologica)202353(11): 1885-1894 (in Chinese).
20 WU B L, SHEN Q, CAO X B. Event-triggered attitude control of spacecraft[J]. Advances in Space Research201861(3): 927-934.
21 LIU Y, JIANG B X, LU J Q, et al. Event-triggered sliding mode control for attitude stabilization of a rigid spacecraft[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems202050(9): 3290-3299.
22 WANG C L, GUO L, WEN C Y, et al. Event-triggered adaptive attitude tracking control for spacecraft with unknown actuator faults[J]. IEEE Transactions on Industrial Electronics202067(3): 2241-2250.
23 LIU W X, GENG Y H, WU B L, et al. Neural-network-based adaptive event-triggered control for spacecraft attitude tracking[J]. IEEE Transactions on Neural Networks and Learning Systems202031(10): 4015-4024.
24 XIE H Y, WU B L, BERNELLI-ZAZZERA F. High minimum inter-execution time sigmoid event-triggered control for spacecraft attitude tracking with actuator saturation[J]. IEEE Transactions on Automation Science and Engineering202320(2): 1349-1363.
25 马广富, 董宏洋, 胡庆雷. 考虑避障的航天器编队轨道容错控制律设计[J]. 航空学报201738(10): 321129.
  MA G F, DONG H Y, HU Q L. Fault-tolerant translational control for spacecraft formation flying with collision avoidance requirement[J]. Acta Aeronautica et Astronautica Sinica201738(10): 321129 (in Chinese).
26 DE FLORIO S, D’AMICO S, RADICE G. Virtual formation method for precise autonomous absolute orbit control[J]. Journal of Guidance, Control, and Dynamics201437(2): 425-438.
27 CHEN L H, LIU M, HUANG X L, et al. Adaptive fuzzy sliding mode control for network-based nonlinear systems with actuator failures[J]. IEEE Transactions on Fuzzy Systems201826(3): 1311-1323.
文章导航

/