γ⁃TiAl与Ti2AlNb线性摩擦焊接头微观组织
收稿日期: 2023-07-20
修回日期: 2023-08-14
录用日期: 2023-09-07
网络出版日期: 2023-11-01
基金资助
国家自然科学基金(51675434);航空发动机及燃气轮机基础科学中心项目(P2022-A-IV-001-002)
Microstructure of γ⁃TiAl and Ti2AlNb linear friction welding joint
Received date: 2023-07-20
Revised date: 2023-08-14
Accepted date: 2023-09-07
Online published: 2023-11-01
Supported by
National Natural Science Foundation of China(51675434);Science Center for Gas Turbine Project(P2022-A-IV-001-002)
为促进γ-TiAl叶片与Ti2AlNb轮盘异种材料整体叶盘线性摩擦焊接制造技术的发展,进行了全片层γ-TiAl与Ti2AlNb的线性摩擦焊接,采用扫描电镜(SEM)、EBSD及拉伸试验方法对焊态及焊后热处理态焊接接头的微观组织及力学性能进行了分析。结果表明,焊合区及近区的相构成自TiAl侧至Ti2AlNb侧在焊态下为γ相-α2相-B2相;经过800 ℃/2 h AC焊后热处理后转变为γ相-α2相+B2相-O+B2相;γ-TiAl侧热力影响区(TMAZ)发生了片层弯折变形,Ti2AlNb侧TMAZ发生了晶粒细化及再结晶。经焊后热处理接头室温及650 ℃抗拉强度分别达到277 MPa和478 MPa。
杜随更 , 胡弘毅 , 丁珂 . γ⁃TiAl与Ti2AlNb线性摩擦焊接头微观组织[J]. 航空学报, 2024 , 45(13) : 629347 -629347 . DOI: 10.7527/S1000-6893.2023.29347
To promote the linear friction welding technology in manufacturing the dissimilar materials blisk of the γ-TiAl blades and Ti2AlNb disc, linear friction welding of γ-TiAl and Ti2AlNb is studied. The microstructure and mechanical properties of the welded joints that are as welded and post weld heat treated were analyzed by SEM, EBSD and tensile testing. The results indicate that the phase composition of the welding zone from the TiAl side to the Ti2AlNb side is γ-α2-B2 as welded and changed into γ-α2+B2-O+B2 after 800 ℃/2 h AC post weld heat treatment. The Thermal and Mechanical Affected Zone (TMAZ) on the γ-TiAl side undergoes laminar bending deformation, while the TMAZ on the Ti2AlNb side undergoes grain refinement and recrystallization. The tensile strength of the joints after post weld heat treatment reaches 277 MPa and 478 MPa at room temperature and 650 ℃, respectively.
Key words: friction welding; TiAl; Ti2AlNb; microstructure; blisk
1 | 王茂松, 杜宇雷. 增材制造钛铝合金研究进展[J]. 航空学报, 2021, 42(7): 625263. |
WANG M S, DU Y L. Research progress of additive manufacturing of TiAl alloys[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 625263 (in Chinese). | |
2 | EMIRALIO?LU A, üNAL R. Additive manufacturing of gamma titanium aluminide alloys: A review[J]. Journal of Materials Science, 2022, 57(7): 4441-4466. |
3 | DU S G, WANG S L, DING K. A novel method of friction-diffusion welding between TiAl alloy and GH3039 high temperature alloy[J]. Journal of Manufacturing Processes, 2020, 56: 688-696. |
4 | 张建伟, 李世琼, 梁晓波, 等. Ti3Al和Ti2AlNb基合金的研究与应用[J]. 中国有色金属学报, 2010, 20(): 336-341. |
ZHANG J W, LI S Q, LIANG X B, et al. The research and application of Ti3Al and Ti2AlNb based alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(Sup 1): 336-341 (in Chinese). | |
5 | JIANG Y, HE Y H, GAO H Y. Pore constitution and tortuosity factor of reactively synthesized porous TiAl intermetallic compound[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(3): 726-733. |
6 | IBá?EZ-PéREZ J, Nó M L, OEHRING M, et al. Influence of Nb on Ti diffusion in γ-TiAl intermetallics studied by mechanical spectroscopy[J]. Journal of Alloys and Compounds, 2021, 867: 158880. |
7 | XU R R, LI M Q, ZHAO Y H. A review of microstructure control and mechanical performance optimization of γ-TiAl alloys[J]. Journal of Alloys and Compounds, 2023, 932: 167611. |
8 | 杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51(2): 129-147. |
YANG R. Advances and challenges of tial base alloys[J]. Acta Metallurgica Sinica, 2015, 51(2): 129-147 (in Chinese). | |
9 | WANG L, ZHANG Y L, HUA X M, et al. Fabrication of γ-TiAl intermetallic alloy using the twin-wire plasma arc additive manufacturing process: Microstructure evolution and mechanical properties[J]. Materials Science and Engineering: A, 2021, 812: 141056. |
10 | XIA Z W, SHAN C W, ZHANG M H, et al. Machinability of γ-TiAl: A review[J]. Chinese Journal of Aeronautics, 2023, 36(7): 40-75. |
11 | YAO C F, LIN J N, WU D X, et al. Surface integrity and fatigue behavior when turning γ-TiAl alloy with optimized PVD-coated carbide inserts[J]. Chinese Journal of Aeronautics, 2018, 31(4): 826-836. |
12 | TANG F, NAKAZAWA S, HAGIWARA M. The effect of quaternary additions on the microstructures and mechanical properties of orthorhombic Ti2AlNb-based alloys[J]. Materials Science and Engineering: A, 2002, 329-331: 492-498. |
13 | BOEHLERT C J. The effects of forging and rolling on microstructure in O+BCC Ti?Al?Nb alloys[J]. Materials Science and Engineering: A, 2000, 279(1-2): 118-129. |
14 | CHEN H X, LIU Z Y, CHENG X, et al. Laser deposition of graded γ-TiAl/Ti2AlNb alloys: Microstructure and nanomechanical characterization of the transition zone[J]. Journal of Alloys and Compounds, 2021, 875: 159946. |
15 | ZHAO S K, TANG B, ZHENG G M, et al. Microstructure evolution and its effect on mechanical properties in an electron beam welded β-solidified TiAl alloy[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(10): 1619-1629. |
16 | 陈国庆, 张秉刚, 何景山, 等. TiAl基合金电子束焊接头组织及转变规律[J]. 焊接学报, 2007, 28(5): 81-84, 117. |
CHEN G Q, ZHANG B G, HE J S, et al. Microstructure and transformation of electron beam welded joints of TiAl base alloy[J]. Transactions of the China Welding Institution, 2007, 28(5): 81-84, 117 (in Chinese). | |
17 | 包潘飞, 宋晓国, 王新波, 等. 连接温度对高铌TiAl合金扩散接头组织和强度的影响[J]. 稀有金属材料与工程, 2018, 47(7): 2132-2136. |
BAO P F, SONG X G, WANG X B, et al. Effect of bonding temperature on microstructure and strength of high Nb containing TiAl alloy diffusion joints[J]. Rare Metal Materials and Engineering, 2018, 47(7): 2132-2136 (in Chinese). | |
18 | SONG X G, SI X Q, CAO J, et al. Microstructure and joining properties of high Nb-containing TiAl alloy brazed joints[J]. Rare Metal Materials and Engineering, 2018, 47(1): 52-58. |
19 | DU S G, WANG S L, XU W T. Characterizing micromechanical properties of friction welding interface between TiAl alloy and GH3039 superalloy[J]. Materials, 2020, 13(9): 2072. |
20 | CHATURVEDI M C, XU Q, RICHARDS N L. Development of crack-free welds in a TiAl-based alloy[J]. Journal of Materials Processing Technology, 2001, 118(1-3): 74-78. |
21 | CAO J, DAI X Y, LIU J Q, et al. Relationship between microstructure and mechanical properties of TiAl/Ti 2 AlNb joint brazed using Ti-27Co eutectic filler metal[J]. Materials & Design, 2017, 121: 176-184. |
22 | SUN Z, ZHU X X, CHEN H Z, et al. Brazing of TiAl and Ti2AlNb alloys using high-entropy braze fillers[J]. Materials Characterization, 2022, 186: 111814. |
23 | ZHU L, TANG B, WEI B B, et al. Strengthening mechanisms of TiAl/Ti2AlNb diffusion bonding joint after post-bonded heat treatment and hot deformation[J]. Materials Science and Engineering: A, 2021, 825: 141872. |
24 | ZHU L, LI J S, TANG B, et al. Microstructure evolution and mechanical properties of diffusion bonding high Nb containing TiAl alloy to Ti2AlNb alloy[J]. Vacuum, 2019, 164: 140-148. |
25 | DU S G, LI N, WANG S L. Intermediate phases of TiAl /GH3039 friction welding joint[J]. Rare Metal Materials and Engineering, 2021, 50(9): 3102-3109. |
26 | 程剑文, 饶群力, 李金富, 等. Ti2AlNb基合金中的组织转变及其动力学研究进展[J]. 航空材料学报, 2022, 42(6): 1-8. |
CHENG J W, RAO Q L, LI J F, et al. Research progress of microstructure transformation and kinetics in Ti2AlNb-based alloy[J]. Journal of Aeronautical Materials, 2022, 42(6): 1-8 (in Chinese). | |
27 | WU Y, YANG D Z, SONG G M. The formation mechanism of the O phase in a Ti3Al?Nb alloy[J]. Intermetallics, 2000, 8(5-6): 629-632. |
28 | CHEN X, XIE F Q, MA T J, et al. Microstructure evolution and mechanical properties of linear friction welded Ti2AlNb alloy[J]. Journal of Alloys and Compounds, 2015, 646: 490-496. |
29 | 陈国庆, 张戈, 尹乾兴, 等. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119. |
CHEN G Q, ZHANG G, YIN Q X, et al. Research progress on welding crack control of TiAl alloy[J]. Materials Reports, 2020, 34(5): 5115-5119 (in Chinese). | |
30 | XU Q, CHATURVEDI M C, RICHARDS N L. The role of phase transformation in electron-beam welding of TiAl-based alloys[J]. Metallurgical and Materials Transactions A, 1999, 30(7): 1717-1726. |
/
〈 |
|
〉 |