分布式动力翼-诱导翼面推进-气动耦合模型
收稿日期: 2023-07-03
修回日期: 2023-10-07
录用日期: 2023-10-27
网络出版日期: 2023-11-01
基金资助
装备预研项目(50911040803);国防基金(2021-JCJQ-JJ-0805);陕西省自然科学基金(2022JQ-060);基础加强计划(2022-173ZD-195)
Propulsion/aerodynamic coupling modeling for distributed-propulsion-wing with induced wing configuration
Received date: 2023-07-03
Revised date: 2023-10-07
Accepted date: 2023-10-27
Online published: 2023-11-01
Supported by
Equipment Pre-Research Project(50911040803);National Defence Fund(2021-JCJQ-JJ-0805);Natural Science Foundation of Shaanxi Province(2022JQ-060);Strengthening Basic Disciplines Program(2022-173ZD-195)
针对分布式动力垂直起降飞行器,提出了综合理论模型和工程经验假设的分布式动力翼-诱导翼面布局的推进-气动耦合模型,实现了对垂起-过渡-巡航全飞行包线内分布式动力翼-诱导翼面气动性能的实时快速计算。结合涵道流场模型和涵道推力增强系数发展了涵道喷流速度的快速计算方法,针对有/无动力输入状态完成了基于动量理论的推进-气动耦合模型推导,进行了推进-气动耦合模型特性分析,并开展了典型飞行工况下的CFD仿真校验与分析。结果表明,所建立的分布式动力翼-诱导翼面的推进-气动耦合模型具有较高精度,计算速度很快,能够满足动力学系统分析和飞行控制系统设计时的实时计算需求。
赵清风 , 周洲 , 李明浩 , 徐德 . 分布式动力翼-诱导翼面推进-气动耦合模型[J]. 航空学报, 2024 , 45(10) : 129252 -129252 . DOI: 10.7527/S1000-6893.2023.29252
This paper proposes a propulsion/aerodynamic coupling model for the distributed-propulsion-wing with induced wing configuration based on the research on distributed-propulsion vertical takeoff and landing vehicles, combined theoretical models and engineering assumptions. This model enables real-time and rapid calculation of the aerodynamic performance of distributed-propulsion-wing with induced wing configuration within the entire flight envelope, including vertical takeoff, transition, and cruise phases. Firstly, a fast calculation method for ducted jet velocity is developed by combining the ducted flow field model and the ducted thrust enhancement coefficient. Then, based on the momentum theory, the propulsion-aerodynamic coupling model is derived for both powered and unpowered conditions. Finally, the characteristics of the propulsion-aerodynamic coupling model are analyzed, and CFD simulations and analyses conducted for typical flight conditions. The results show that the proposed propulsion/aerodynamic coupling model for the distributed-propulsion-wing with induced wing configuration exhibits high accuracy and fast computation speed, meeting the real-time calculation requirements for dynamic system analysis and flight control system design.
1 | WELLS D. NASA green flight challenge: Conceptual design approaches and technologies to enable 200 passenger Miles per gallon[C]∥Proceedings of the 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2011. |
2 | PERRY A T, ANSELL P J, KERHO M. Aero-propulsive and propulsor cross-coupling effects on a distributed propulsion system[C]∥Proceedings of the 2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018. |
3 | BELARDO M, MARANO A D, BERETTA J, et al. Wing structure of the next-generation civil tiltrotor: From concept to preliminary design[J]. Aerospace, 2021, 8(4): 102. |
4 | 朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行器技术[J]. 航空学报, 2022, 43(7): 025556. |
ZHU B J, YANG X X, ZONG J A, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 025556 (in Chinese). | |
5 | STOLL A M, BEVIRT J, MOORE M D, et al. Drag reduction through distributed electric propulsion[C]∥ Proceedings of the 14th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2014. |
6 | KIM H D, PERRY A T, ANSELL P J. A review of distributed electric propulsion concepts for air vehicle technology[C]∥2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway: IEEE Press, 2018. |
7 | SCHILTGEN B, GREEN M, GIBSON A, et al. Benefits and concerns of hybrid electric distributed propulsion with conventional electric machines[C]∥Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2012. |
8 | 王科雷, 周洲, 马悦文, 等. 垂直起降固定翼无人机技术发展及趋势分析[J]. 航空工程进展, 2022, 13(5): 1-13. |
WANG K L, ZHOU Z, MA Y W, et al. Development and trend analysis of vertical takeoff and landing fixed wing UAV[J]. Advances in Aeronautical Science and Engineering, 2022, 13(5): 1-13 (in Chinese). | |
9 | 王科雷, 周洲, 郭佳豪, 等. 分布式动力翼前飞状态动力/气动耦合特性分析[J]. 航空学报, 2024, 45(2): 128643. |
WANG K L, ZHOU Z, GUO J H, et al. Analysis on propulsive/aerodynamic coupled characteristics of distributed-propulsion-wing during forward flight[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128643 (in Chinese). | |
10 | PERRY A T. The effects of aero-propulsive coupling on aircraft with distributed propulsion systems[D]. Urbana-Champaign: University of Illinois at Urbana-Champaign, 2020. |
11 | HOOVER C B, SHEN J W, KRESHOCK A R. Propeller whirl flutter stability and its influence on X-57 aircraft design[J]. Journal of Aircraft, 2018, 55(5): 2169-2175. |
12 | 张星雨, 高正红, 雷涛, 等. 分布式电推进飞机气动-推进耦合特性地面试验[J]. 航空学报, 2022, 43(8): 125389. |
ZHANG X Y, GAO Z H, LEI T, et al. Ground test on aerodynamic-propulsion coupling characteristics of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125389 (in Chinese). | |
13 | ZHU Z H, XIAO T H, ZHAI C, et al. Numerical study on lift enhancement for upper surface blowing system with powered turbofan engine[C]∥Proceedings of the AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
14 | STOLL A M. Comparison of CFD and experimental results of the LEAPTech distributed electric propulsion blown wing[C]∥Proceedings of the 15th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2015. |
15 | MARCUS E A, DE VRIES R, RAJU KULKARNI A, et al. Aerodynamic investigation of an over-the-wing propeller for distributed propulsion[C]∥Proceedings of the 2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018. |
16 | 张阳, 周洲, 郭佳豪. 分布式涵道风扇喷流对后置机翼的气动性能影响[J]. 航空学报, 2021, 42(9): 224977. |
ZHANG Y, ZHOU Z, GUO J H. Effects of distributed electric propulsion jet on aerodynamic performance of rear wing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224977 (in Chinese). | |
17 | BORER N K, DERLAGA J M, DEERE K A, et al. Comparison of aero-propulsive performance predictions for distributed propulsion configurations[C]∥Proceedings of the 55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
18 | KEEN E, MASON W. A conceptual design methodology for predicting the aerodynamics of upper surface blowing on airfoils and wings[C]∥Proceedings of the 23rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2005. |
19 | SPENCE D A. The lift coefficient of a thin, jet-flapped wing[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1956, 238(1212): 46-68. |
20 | SPENCE D A. The lift on a thin aerofoil with a jet-augmented flap[J]. Aeronautical Quarterly, 1958, 9(3): 287-299. |
21 | KO A, OHANIAN O, GELHAUSEN P. Ducted fan UAV modeling and simulation in preliminary design[C]∥Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston: AIAA, 2007. |
22 | HARINARAIN V N. Aerodynamic performance study on ducted propeller system for propulsion and control & stability applications[D]. Delft: Delft University of Technology, 2017. |
23 | ROBERT N. Improved modeling of propeller-wing interactions with a lifting-line approach[D]. Delft: Delft University of Technology, 2020. |
24 | 夏济宇,周洲,徐德,等 .矢量电推进系统的气动-推进耦合模型[J]. 航空学报, 2023, 44(11): 127672. |
XIA J Y, ZHOU Z, XU D, et al. Aerodynamic/propulsion coupling model of vector electric propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11): 127672 (in Chinese). | |
25 | WERLE M J. Analytical model for ring-wing propulsor thrust augmentation[J]. Journal of Aircraft, 2020, 57(5): 901-913. |
26 | WERLE M J. Analytical model for ring-wing propulsors at angle of attack[J]. Journal of Aircraft, 2022, 59(5): 1351-1362. |
27 | WERLE M J. Aerodynamic loads and moments on axisymmetric ring-wing ducts[J]. AIAA Journal, 2014, 52(10): 2359-2364. |
28 | CERNY M, BREITSAMTER C. A comparison of isolated and ducted fixed-pitch propellers under non-axial inflow conditions[J]. Aerospace, 2020, 7(8): 112. |
29 | BEARD R W, MCLAIN T W. Small Unmanned Aircraft: Theory and Practice[M]. Princeton: Princeton University Press, 2012. |
30 | KUHN R. Semiempirical procedure for estimating lift and drag characteristics of propeller-wing-flap configurations for vertical-and short-take-off-and-landing airplanes: NASA-MEMO-1-16-59L[R]. Washington, D.C.: NASA, 1959. |
31 | 李凤蔚. 空气与气体动力学引论[M]. 西安: 西北工业大学出版社, 2007. |
LI F W. Introduction to air and gas dynamics[M]. Xi’an: Northwestern Polytechnical University Press, 2007 (in Chinese). |
/
〈 |
|
〉 |