电子电气工程与控制

基于迁移学习的角度约束时间最短制导算法

  • 罗皓文 ,
  • 何绍溟 ,
  • 金天宇 ,
  • 刘子超
展开
  • 1.北京理工大学 宇航学院,北京  100081
    2.北京理工大学 无人机自主控制技术北京市重点实验室,北京  100081
.E-mail: shaoming.he@bit.edu.cn

收稿日期: 2022-12-14

  修回日期: 2023-02-01

  录用日期: 2023-03-20

  网络出版日期: 2023-03-31

基金资助

国家重点研发计划(2022YFE0204400)

Impact-angle-constrained with time-minimum guidance algorithm based on transfer learning

  • Haowen LUO ,
  • Shaoming HE ,
  • Tianyu JIN ,
  • Zichao LIU
Expand
  • 1.School of Astronautics,Beijing Institute of Technology,Beijing  100081,China
    2.Beijing Key Laboratory of UAV Autonomous Control Technology,Beijing Institute of Technology,Beijing  100081,China

Received date: 2022-12-14

  Revised date: 2023-02-01

  Accepted date: 2023-03-20

  Online published: 2023-03-31

Supported by

National Key Research and Development Programm(2022YFE0204400)

摘要

由于导弹所处的气动环境等外界条件复杂多变,因此在特定气动环境中表现优异的深度监督学习制导算法将无法直接作用于新环境,这给制导指令的精准预测带来了很大挑战。针对上述问题,本文以落角约束下优化飞行时间的制导问题为背景,提出了一种基于迁移学习的角度约束时间最短制导算法,该算法只需极少量的新数据,便能使制导律迅速适应不同的气动环境。在本文中,我们首先通过域对抗地训练特征提取器和域判别器,从不同气动环境的弹道数据中提取出对气动变化不敏感的关键特征;其次设计了适应于不同气动环境的偏置加速度预测器,进而实现了对导弹的精准制导;最后,大量数值仿真结果表明,在新气动环境下,基于迁移学习的角度约束时间最短制导算法仍能实现制导指令的精准预测。

本文引用格式

罗皓文 , 何绍溟 , 金天宇 , 刘子超 . 基于迁移学习的角度约束时间最短制导算法[J]. 航空学报, 2023 , 44(19) : 328400 -328400 . DOI: 10.7527/S1000-6893.2022.28400

Abstract

The aerodynamic environment and other external conditions of the missile are complex and changeable. The deep supervised learning guidance algorithm with excellent performance in the specific aerodynamic environment cannot be directly applied to the new environment, which brings great challenges to the accurate prediction of guidance instructions. To solve the above problem, this paper proposes a Transfer-learning-based Impact-angel Constraint with Time-minimum Guidance algorithm (TICTG) for missile guidance, which minimizes the impact time under impact angle constraints. The proposed algorithm can quickly adapt the guidance law to different aerodynamic conditions with very little new data. Firstly, we extract key features insensitive to aerodynamic changes from ballistic data in different aerodynamic environments by training the feature extractor and domain discriminator against the domain ground. Secondly, we design a bias acceleration predictor adapted to different aerodynamic conditions, so as to achieve accurate guidance of the missile. A large number of numerical simulation results show that the method proposed can achieve accurate prediction of guidance instructions in the new aerodynamic environment.

参考文献

1 高峰, 唐胜景, 师娇, 等. 一种基于落角约束的偏置比例导引律[J]. 北京理工大学学报201434(3): 277-282.
  GAO F, TANG S J, SHI J, et al. A bias proportional navigation guidance law based on terminal impact angle constraint[J]. Transactions of Beijing Institute of Technology201434(3): 277-282 (in Chinese).
2 KIM B S, LEE J G, HAN H S. Biased PNG law for impact with angular constraint[J]. IEEE Transactions on Aerospace and Electronic Systems199834(1): 277-288.
3 张友根, 于德海, 张友安. 基于时间最优的攻击角度控制研究[J]. 飞行力学201028(2): 46-50.
  ZHANG Y G, YU D H, ZHANG Y A. Study on time-optimal impact angle control[J]. Flight Dynamics201028(2): 46-50 (in Chinese).
4 黄汉桥, 周军, 郭建国. 具有角度和时间约束的导弹最优全弹道设计[J]. 西北工业大学学报201028(2): 165-170.
  HUANG H Q, ZHOU J, GUO J G. Design and simulation of an optimal missile trajectory with constraints of impact time and impact angle[J]. Journal of Northwestern Polytechnical University201028(2): 165-170 (in Chinese).
5 KIM T H, LEE C H, TAHK M J, et al. Biased PNG law for impact-time control[J]. Transactions of the Japan Society for Aeronautical and Space Sciences201356(4): 205-214.
6 KIM T H, LEE C H, JEON I S, et al. Augmented polynomial guidance with impact time and angle constraints[J]. IEEE Transactions on Aerospace and Electronic Systems201349(4): 2806-2817.
7 ARITA S, UENO S. Optimal feedback guidance for nonlinear missile model with impact time and angle constraints: AIAA-2013-4785[R]. Reston: AIAA, 2013.
8 LU P. Introducing computational guidance and control[J]. Journal of Guidance, Control, and Dynamics201740(2): 193.
9 WANG X Y, QUAN Z Y, ZHANG J J. Optimal 3-dimension trajectory-tracking guidance for reusable launch vehicle based on back-stepping adaptive dynamic programming[J]. Neural Computing and Applications202335(7): 5319-5334.
10 WAN S Z, CHANG X F, LI Q C, et al. Suboptimal midcourse guidance with terminal-angle constraint for hypersonic target interception[J]. International Journal of Aerospace Engineering20192019: 1-13.
11 周聪, 闫晓东, 唐硕, 等. 大气层内模型预测静态规划拦截中制导[J]. 航空学报202142(11): 524912.
  ZHOU C, YAN X D, TANG S, et al. Midcourse guidance for endo-atmospheric interception based on model predictive static programming[J]. Acta Aeronautica et Astronautica Sinica202142(11): 524912 (in Chinese).
12 PAN B F, MA Y Y, YAN R. Newton-type methods in computational guidance[J]. Journal of Guidance, Control, and Dynamics201942(2): 377-383.
13 SHI W, JING Z L, YANG Y S, et al. A pseudospectral approach to ascent trajectory optimization for hypersonic air-breathing vehicles[C]∥ 2013 9th Asian Control Conference (ASCC). Piscataway: IEEE Press, 2013: 1-6.
14 HE S M, SHIN H S, TSOURDOS A. Computational missile guidance: A deep reinforcement learning approach[J]. Journal of Aerospace Information Systems202118(8): 571-582.
15 刘子超, 王江, 何绍溟, 等. 基于预测校正的落角约束计算制导方法[J]. 航空学报202243(8): 325433.
  LIU Z C, WANG J, HE S M, et al. A computational guidance algorithm for impact angle control based on predictor-corrector concept[J]. Acta Aeronautica et Astronautica Sinica202243(8): 325433 (in Chinese).
16 PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering201022(10): 1345-1359.
17 王育鹏, 吕帅帅, 杨宇, 等. 基于域自适应的复合材料结构损伤识别方法[J]. 航空学报202243(6): 526752.
  WANG Y P, LYU S S, YANG Y, et al. Damage recognition of composite structures based on domain adaptive model[J]. Acta Aeronautica et Astronautica Sinica202243(6): 526752 (in Chinese).
18 O’CONNELL M, SHI G Y, SHI X C, et al. Neural-fly enables rapid learning for agile flight in strong winds[J]. Science Robotics20227(66): eabm6597.
19 YE C C, YANG J X, DING H. High-accuracy prediction and compensation of industrial robot stiffness deformation[J]. International Journal of Mechanical Sciences2022233: 107638.
20 LIU C Y, GRYLLIAS K. Simulation-driven domain adaptation for rolling element bearing fault diagnosis[J]. IEEE Transactions on Industrial Informatics202218(9): 5760-5770.
21 ROSS I M, FAHROO F. A perspective on methods for trajectory optimization: AIAA-2002-4727[R]. Reston: AIAA, 2002.
22 FAHROO F, ROSS I M. Direct trajectory optimization by a Chebyshev pseudospectral method[J]. Journal of Guidance, Control, and Dynamics200225(1): 160-166.
23 SHI Y, WANG Z B. A deep learning-based approach to real-time trajectory optimization for hypersonic vehicles: AIAA-2020-0023[R]. Reston: AIAA, 2020.
24 MA Y C, ZHANG Z, YANG H L, et al. An adaptive adversarial domain adaptation approach for corn yield prediction[J]. Computers and Electronics in Agriculture2021187: 106314.
25 SILVESTRINI S, LAVAGNA M. Deep learning and artificial neural networks for spacecraft dynamics, navigation and control[J]. Drones20226(10): 270.
文章导航

/