S弯喷管正后向红外辐射特征快速预测模型
收稿日期: 2023-09-22
修回日期: 2023-09-28
录用日期: 2023-10-07
网络出版日期: 2023-10-24
基金资助
国家自然科学基金(52076180);陕西省杰出青年科学基金(2021JC-10);国家科技重大专项(J2019-Ⅱ-0015-0036);航空发动机及燃气轮机基础科学中心项目(P2022-B-Ⅰ-002-001,P2022-B-Ⅱ-010-001);中央高校基本科研业务费专项资金(501XTCX2023146001)
Rapid prediction model for tail infrared radiation characteristics of serpentine nozzles
Received date: 2023-09-22
Revised date: 2023-09-28
Accepted date: 2023-10-07
Online published: 2023-10-24
Supported by
National Natural Science Foundation of China(52076180);Funds of Distinguished Young Scholars of Shaanxi Province(2021JC-10);National Science and Technology Major Project (J2019-Ⅱ-0015-0036);Science Center for Gas Turbine Project (P2022-B-Ⅰ-002-001, P2022-B-Ⅱ-010-001);the Fundamental Research Funds for the Central Universities(501XTCX2023146001)
为了在航空发动机排气系统红外隐身设计初期快速计算不同遮挡特性S弯喷管正后向的红外辐射特征,发展了基于图像法和一维流场模型的S弯喷管红外辐射特征快速预测模型。该模型采用图像法将S弯喷管的几何遮挡关系转化为多层二维图像的像素运算,根据可压缩管流和射流理论建立S弯喷管一维流场模型,基于统计窄谱带模型计算燃气吸收发射特征,结合燃气可见区域长度和容积的拟合函数考虑遮挡特性对燃气辐射的影响。通过与离散传递法对比验证了模型的计算效率和准确性。结果表明:快速预测模型可将S弯喷管正后向红外辐射特征计算时长由数小时缩短至秒级,其计算结果与离散传递法在趋势和数值上均吻合较好。不同遮挡特性S弯喷管和不同喷管工况时总红外辐射强度最大相对误差仅为6.5%,壁面和燃气辐射的最大相对误差分别为4.1%和5.2%。快速预测模型针对轴对称和二元喷管也具有良好的泛用性。
是介 , 周莉 , 史经纬 , 王占学 . S弯喷管正后向红外辐射特征快速预测模型[J]. 航空学报, 2024 , 45(14) : 129639 -129639 . DOI: 10.7527/S1000-6893.2023.29639
To efficiently calculate the infrared radiation characteristics of serpentine nozzles with varying shielding properties during the early stages of infrared stealth design for exhaust systems, a rapid prediction model for the tail infrared radiation characteristics of serpentine nozzles has been developed. This model combines the image-based method and the one-dimensional flow field model. The former transforms the geometric shielding relationship of serpentine nozzles into pixel operations on multi-layer two-dimensional images, and the latter is established based on the compressible pipe flow and jet theory. The gas absorption and emission characteristics are calculated using the statistical narrow-band model. The impact of shielding properties on gas radiation is also considered by fitting functions for the length and volume of the gas-visible region. The computational efficiency and accuracy of the model are verified by comparison with the discrete transfer method. The results show that the rapid prediction model can shorten the computation time of the tail infrared radiation from several hours to about 1 s, and the outcomes of the model align well with the discrete transfer method in terms of trend and value. The maximum relative error in total infrared radiation intensity for different shielding properties of serpentine nozzles and various nozzle working conditions is only 6.5%. Furthermore, the maximum relative errors for wall radiation and gas radiation are 4.1% and 5.2%, respectively. The model also demonstrates good generalizability for axisymmetric and two-dimensional nozzles.
1 | 高翔, 杨青真, 施永强, 等. 出口形式对双S弯排气系统红外特性影响研究[J]. 红外与激光工程, 2015, 44(6): 1726-1732. |
GAO X, YANG Q Z, SHI Y Q, et al. Numerical simulation of radiation intensity of double S-shaped exhaust system with different outlet shapes[J]. Infrared and Laser Engineering, 2015, 44(6): 1726-1732 (in Chinese). | |
2 | 邓洪伟, 尚守堂, 金海, 等. 航空发动机隐身技术分析与论述[J]. 航空科学技术, 2017, 28(10): 1-7. |
DENG H W, SHANG S T, JIN H, et al. Analysis and discussion on stealth technology of aero engine[J]. Aeronautical Science & Technology, 2017, 28(10): 1-7 (in Chinese). | |
3 | JOHANSSON M. Propulsion integration in an UAV[C]∥24th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2006. |
4 | JOHANSSON M, DALENBRING M. Calculation of IR signatures from airborne vehicles[C]∥Proceedings Volume 6228, Modeling and Simulation for Military Applications. Bellingham: SPIE, 2006: 971-982. |
5 | RAO N A, BOOMADEV, SHUBHAM, et al. IR signature studies of serpentine nozzle with elliptic exit[C]∥International Conference on Theoretical Applied Computational and Experimental Mechanics. Kharagpur: Indian Institute of Technology, 2017. |
6 | RAO N A, ARORA R, KUSHARI A. High subsonic flow field from the serpentine nozzle[C]∥8th International Conference on Fluid Flow, Heat and Mass Transfer, 2021. |
7 | AN S Y, KIM W C, OH S H. A study on the effect of engine nozzle configuration on the plume IR signature[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2012, 40(8): 688-694. |
8 | LEE Y R, LEE J W, SHIN C M, et al. Characteristics of flow field and IR of double serpentine nozzle plume for varying cross sectional areas and flight conditions in UCAV[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2021, 49(8): 689-698. |
9 | 桑学仪, 吉洪湖, 王丁. 长径比和偏径比对双S形二元喷管性能的影响[J]. 红外技术, 2019, 41(5): 443-449. |
SANG X Y, JI H H, WANG D. Influence of length-diameter ratio and offset-diameter ratio on performance of serpentine 2-D nozzle[J]. Infrared Technology, 2019, 41(5): 443-449 (in Chinese). | |
10 | 王宇恒, 吉洪湖, 程稳, 等. 收扩喷管设计对双S形二元排气系统气动与红外特征的影响[J]. 红外与激光工程, 2021, 50(11): 20210084. |
WANG Y H, JI H H, CHENG W, et al. Influence of design of convergent-divergent nozzle on aerodynamic and infrared characteristics of serpentine 2-D exhaust system[J]. Infrared and Laser Engineering, 2021, 50(11): 20210084 (in Chinese). | |
11 | CHENG W, WANG Z, ZHOU L, et al. Influences of shield ratio on the infrared signature of serpentine nozzle[J]. Aerospace Science and Technology, 2017, 71(12): 299-311. |
12 | 程稳, 周莉, 王占学, 等. 几何参数对S弯喷管红外辐射特性的影响[J]. 推进技术, 2018, 39(9): 1974-1985. |
CHENG W, ZHOU L, WANG Z X, et al. Effects of geometric parameters on infrared signature of serpentine nozzle[J]. Journal of Propulsion Technology, 2018, 39(9): 1974-1985 (in Chinese). | |
13 | CHENG W, WANG Z X, ZHOU L, et al. Investigation of infrared signature of serpentine nozzle for turbofan[J]. Journal of Thermophysics and Heat Transfer, 2018, 33(1): 170-178. |
14 | 丁娟, 杨青真, 李翔, 等. 不同出口型式S型喷管红外辐射特性研究[J]. 科学技术与工程, 2014, 14(7): 273-276. |
DING J, YANG Q Z, LI X, et al. Research on the infrared radiation characteristic of S-shaped nozzles with different outlet[J]. Science Technology and Engineering, 2014, 14(7): 273-276 (in Chinese). | |
15 | GAO X, YANG Q Z, ZHOU H, et al. Numerical simulation on the infrared radiation characteristics of S-shaped nozzles[J]. Applied Mechanics and Materials, 2013, 482(12): 282-286. |
16 | 黄章斌, 管留, 李晓霞, 等. 喷管类型对飞行器排气系统辐射特性的影响[J]. 红外技术, 2021, 43(6): 587-591. |
HUANG Z B, GUAN L, LI X X, et al. Numerical simulation of radiation characteristics of aircraft exhaust systems with different nozzles[J]. Infrared Technology, 2021, 43(6): 587-591 (in Chinese). | |
17 | MAHULIKAR S P, POTNURU S K, KOLHE P S. Analytical estimation of solid angle subtended by complex well-resolved surfaces for infrared detection studies[J]. Appl. Opt., 2007, 46(22): 4991-4998. |
18 | CHEN H Y, ZHANG H B, XI Z H, et al. Modeling of the turbofan with an ejector nozzle based on infrared prediction[J]. Applied Thermal Engineering, 2019, 159: 113910. |
19 | 柳亚冰, 徐植桂, 叶东鑫, 等. 涡扇发动机最小红外特征模式性能寻优控制研究[J]. 推进技术, 2020, 41(5): 1168-1177. |
LIU Y B, XU Z G, YE D X, et al. A study on performance seeking control of minimum infrared characteristic mode for turbofan engine[J]. Journal of Propulsion Technology, 2020, 41(5): 1168-1177 (in Chinese). | |
20 | 孙啸林, 王占学, 周莉, 等. 基于多参数耦合的S弯隐身喷管设计方法研究[J]. 工程热物理学报, 2015, 36(11): 2371-2375. |
SUN X L, WANG Z X, ZHOU L, et al. The design method of serpentine stealth nozzle based on coupled parameters[J]. Journal of Engineering Thermophysics, 2015, 36(11): 2371-2375 (in Chinese). | |
21 | 程稳. S弯喷管红外辐射特性预测及优化设计方法[D]. 西安: 西北工业大学, 2019: 89-95. |
CHENG W. Infrared signature prediction and optimization design method for serpentine nozzle[D]. Xi’an: Northwestern Polytechnical University, 2019: 89-95 (in Chinese). | |
22 | 程稳, 孙啸林, 马姗. 基于假设气体法的燃气辐射特性计算模型[J]. 红外与激光工程, 2022, 51(7): 20220286. |
CHENG W, SUN X L, MA S. Fictitious gas-based model for calculating radiation characteristics of gas[J]. Infrared and Laser Engineering, 2022, 51(7): 20220286 (in Chinese). | |
23 | TASHKUN S A, PEREVALOV V I.CDSD-4000: High-resolution, high-temperature carbon dioxide spectroscopic databank[J].Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(9):1403-1410. |
24 | ROTHMAN L S, GORDON I E, BARBER R J, et al. HITEMP, the high-temperature molecular spectroscopic database [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2010, 111(15): 2139-2150. |
25 | 王新月. 气体动力学基础[M]. 西安: 西北工业大学出版社, 2006: 182-187. |
WANG X Y. Fundamentals of gas dynamics[M]. Xi’an: Northwestern Polytechnical University Press, 2006: 182-187 (in Chinese). | |
26 | 王丰, 吉洪湖, 于明飞. 涡扇发动机收敛排气系统进口总温总压对喷流中心线温度分布影响[J]. 航空动力学报, 2016, 31(4): 816-822. |
WANG F, JI H H, YU M F. Influence of total temperature and pressure at the inlet of convergent exhaust system of turbofan engine on temperature distribution at plume centerline[J]. Journal of Aerospace Power, 2016, 31(4): 816-822 (in Chinese). | |
27 | 孟凡斌, 郑丽. 基于LOWTRAN 7的红外大气透过率计算方法[J]. 光电技术应用, 2009, 24(3): 29-32, 66. |
MENG F B, ZHENG L. LOWTRAN 7-based calculation method of IR transmittance in the atmosphere[J]. Electro-Optic Technology Application, 2009, 24(3): 29-32, 66 (in Chinese). |
/
〈 |
|
〉 |