针对高阶间断伽辽金数值格式的Gibbs现象智能去噪方法
收稿日期: 2023-07-14
修回日期: 2023-09-28
录用日期: 2023-10-17
网络出版日期: 2023-10-24
基金资助
航空科学基金(2018ZA52002)
Intelligent denoising methods for Gibbs phenomenon of high⁃order discontinuous Galerkin numerical scheme
Received date: 2023-07-14
Revised date: 2023-09-28
Accepted date: 2023-10-17
Online published: 2023-10-24
Supported by
Aeronautical Science Foundation of China(2018ZA52002)
在使用高阶间断伽辽金方法进行高速可压缩流场计算时,激波附近会出现影响数值精度甚至导致计算失败的非物理数值振荡,这类似于图像处理领域不断堆积的Gibbs噪声。如何抑制激波振荡或消除Gibbs现象并确保计算过程稳定,已经成为了高阶间断伽辽金方法研究领域的一个挑战。针对这一问题,利用机器学习技术,提出了一种由图注意力机制和图卷积网络构成的Gibbs现象智能去噪模型,该模型能够抑制间断伽辽金方法计算中激波附近的振荡,在确保间断伽辽金方法计算顺利进行的同时提升了捕捉激波的效果。该模型使用间断伽辽金方法计算中产生的Gibbs噪声数据构造训练数据集,在图卷积滤波器的指导下进行图神经网络训练。对跨声速和超声速来流条件的NACA0012翼型进行了数值模拟,结果表明在间断伽辽金方法计算过程中嵌入所构建的Gibbs现象智能去噪模型,能够消除Gibbs现象,有效抑制激波振荡。
刘嘉文 , 王明振 , 欧阳文轩 , 虞建 , 刘学军 , 吕宏强 . 针对高阶间断伽辽金数值格式的Gibbs现象智能去噪方法[J]. 航空学报, 2024 , 45(14) : 129323 -129323 . DOI: 10.7527/S1000-6893.2023.29323
The high-order discontinuous Galerkin (DG) method for the high-speed compressible flow field calculations will cause non-physical numerical oscillation near the shock wave, affecting numerical accuracy and even leading to calculation failure, similar to the accumulation of Gibbs noise in the image processing field. In the high-order DG methods, restraining shock oscillation or eliminating the Gibbs phenomenon to ensure the stability of the calculation process has become a challenge. A Gibbs phenomenon intelligent denoising model composed of graph attention mechanism and graph convolutional network is proposed by using machine learning technology. This model can restrain the oscillation near the shock wave in DG calculation, while ensuring the convergence of DG calculation and improving the effectiveness of shock wave capturing. After constructing a training dataset from Gibbs noise data generated by DG calculation, this model trains the graph neural network under the guidance of graph convolutional filters. In the numerical simulation experiment of NACA0012 airfoil under transonic and supersonic inflow conditions, the Gibbs phenomenon intelligent denoising model is embedded in the DG calculation. The experimental results show that the Gibbs phenomenon has been eliminated and shock oscillation has been effectively restrained.
1 | 王圣业, 邓小刚, 董义道, 等. 面向工程湍流的高精度数值方法[J]. 航空学报, 2023, 44(15): 528728. |
WANG S Y, DENG X G, DONG Y D, et al. High-order numerical methods for engineering turbulence simulation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528728 (in Chinese). | |
2 | REED W H, HILL T R. Triangular mesh methods for the neutron transport equation: LA-UR-73-479[R]. New Mexico: Los Alamos Scientific Lab., 1973. |
3 | BASSI F, REBAY S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J]. Journal of Computational Physics, 1997, 131(2): 267-279. |
4 | BASSI F, REBAY S. High-order accurate discontinuous finite element solution of the 2D Euler equations[J]. Journal of Computational Physics, 1997, 138(2): 251-285. |
5 | FERRER E, RUBIO G, NTOUKAS G, et al. HORSES3D: A high-order discontinuous Galerkin solver for flow simulations and multi-physics applications[J]. Computer Physics Communications, 2023, 287: 108700. |
6 | 吕宏强, 张涛, 孙强, 等. 间断伽辽金方法在可压缩流数值模拟中的应用研究综述[J]. 空气动力学学报, 2017, 35(4): 455-471. |
LYU H Q, ZHANG T, SUN Q, et al. Applications of discontinuous Galerkin method in numerical simulations of compressible flows: A review[J]. Acta Aerodynamica Sinica, 2017, 35(4): 455-471 (in Chinese). | |
7 | GIBBS J W. Fourier’s series[J]. Nature, 1899, 59(1539): 606. |
8 | GOTTLIEB D, HESTHAVEN J S. Spectral methods for hyperbolic problems[J]. Journal of Computational and Applied Mathematics, 2001, 128(1/2): 83-131. |
9 | 赵辉, 张耀冰, 陈江涛, 等. 基于阶跃的 Laplacian 人工粘性激波捕捉方法在高精度 DG 方法中的应用[C]∥ 中国力学学会学术大会论文集. 北京:中国力学学会, 2019. |
ZHAO H, ZHANG Y B, CHEN J T, et al. Application of step-based Laplacian artificial viscosity shock capturing method in high-precision DG method [C]∥ Proceedings of Chinese Congress of Theoretical and Applied Mechanics. Beijing: The Chinese Society of Theoretical and Applied Mechanics, 2019 (in Chinese). | |
10 | COCKBURN B, LIN S Y, SHU C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems[J]. Journal of Computational Physics, 1989, 84(1): 90-113. |
11 | COCKBURN B, SHU C W. The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems [J]. Journal of Computational Physics, 1998, 141(2): 199-224. |
12 | QIU J X, SHU C W. A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters[J]. SIAM Journal on Scientific Computing, 2005, 27(3): 995-1013. |
13 | ZHU J, QIU J X, SHU C W, et al. Runge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes[J]. Journal of Computational Physics, 2008, 227(9): 4330-4353. |
14 | HARTMANN R. Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier-Stokes equations[J]. International Journal for Numerical Methods in Fluids, 2006, 51(9/10): 1131-1156. |
15 | HARTMANN R, HOUSTON P. Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations[J]. Journal of Computational Physics, 183(2): 508-532. |
16 | DISCACCIATI N, HESTHAVEN J S, RAY D. Controlling oscillations in high-order discontinuous Galerkin schemes using artificial viscosity tuned by neural networks[J]. Journal of Computational Physics, 2020, 409: 109304. |
17 | ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. |
18 | MUCKLEY M J, ADES-ARON B, PAPAIOANNOU A, et al. Training a neural network for Gibbs and noise removal in diffusion MRI[J]. Magnetic Resonance in Medicine, 2021, 85(1): 413-428. |
19 | RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]∥ Proceedings of 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241. |
20 | BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[DB/OL]. arXiv: , 2013. |
21 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[DB/OL]. arXiv: , 2016. |
22 | YING R, HE R N, CHEN K F, et al. Graph convolutional neural networks for web-scale recommender systems[C]∥ Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 974–983. |
23 | SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[M]∥ The Semantic Web. Cham: Springer International Publishing, 2018: 593-607. |
24 | WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. |
25 | HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154. |
26 | WANG Y W, HU Z N, YE Y S, et al. Demystifying graph neural network via graph filter assessment[C]∥ International Conference on Learning Representations. 2020. |
27 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]∥ 31st Conference on Neural Information Processing Systems. 2017. |
28 | VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[DB/OL]. arXiv: , 2017. |
29 | 吕宏强, 伍贻兆, 周春华, 等. 稀疏非结构网格上的亚声速流高精度数值模拟[J]. 航空学报, 2009, 30(2): 200-204. |
LYU H Q, WU Y Z, ZHOU C H, et al. High resolution of subsonic flows on coarse grids[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 200-204 (in Chinese). | |
30 | 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780. |
XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755-780 (in Chinese). | |
31 | KINGMA D P, BA J. Adam: A method for stochastic optimization[DB/OL]. arXiv: , 2014. |
32 | RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536. |
33 | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958. |
34 | 孙强. 自适应间断Galerkin有限元方法的可压缩流数值模拟[D]. 南京: 南京航空航天大学, 2017. |
SUN Q. An adaptive discontinuous Galerkin method for numerical simulation of compressible flows[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese). | |
35 | PULLIAM T H, STEGER J L. Recent improvements in efficiency, accuracy, and convergence for implicit approximate factorization algorithms: AIAA-1985-0360[R]. Reston: AIAA, 1985. |
36 | PERSSON P O, PERAIRE J. Sub-cell shock capturing for discontinuous Galerkin methods: AIAA-2006-0112[R]. Reston: AIAA, 2006. |
37 | HUANG L T, JIANG Z H, LOU S, et al. Simple and robust h-adaptive shock-capturing method for flux reconstruction framework[J]. Chinese Journal of Aeronautics, 2023, 36(7): 348-365. |
/
〈 |
|
〉 |