地面颤振模拟试验技术的研究进展

  • 张桂玮 ,
  • 刘召庆 ,
  • 朱镭 ,
  • 张衡 ,
  • 田玮 ,
  • 李伟光 ,
  • 杨智春
展开
  • 1. 西安应用光学研究所
    2. 西北工业大学

收稿日期: 2023-06-27

  修回日期: 2023-10-17

  网络出版日期: 2023-10-24

基金资助

国家自然科学基金;111 Project

Research Progress of Ground Flutter Simulation Test Technology

  • ZHANG Gui-Wei ,
  • LIU Zhao-Qing ,
  • ZHU Lei ,
  • ZHANG Heng ,
  • TIAN Wei ,
  • LI Wei-Guang ,
  • YANG Zhi-Chun
Expand

Received date: 2023-06-27

  Revised date: 2023-10-17

  Online published: 2023-10-24

摘要

颤振问题是飞行器在飞行过程中应竭力避免,且可能导致灾难性后果的一种气动弹性动力学稳定性问题。作为一种新兴的颤振试验研究方法,地面颤振模拟试验是指直接采用飞行器原型结构或模型结构作为试验对象,利用激振器等气动力模拟加载装置模拟分布的气动力载荷,在地面获得飞行器结构颤振特性的一种半物理仿真试验技术。本文从非定常气动力降阶实时重构、非定常气动力模拟加载以及地面颤振模拟试验的实施三个方面,分析了地面颤振模拟试验技术的研究现状,最后展望了地面颤振模拟试验技术未来的发展方向。

本文引用格式

张桂玮 , 刘召庆 , 朱镭 , 张衡 , 田玮 , 李伟光 , 杨智春 . 地面颤振模拟试验技术的研究进展[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2023.29229

Abstract

Flutter is a kind of aeroelastic dynamic stability problem that should be avoided during flight and may lead to disastrous consequences. Ground flutter simulation test (GFST) is an emerging method flutter testing method, which directly uses the prototype structure or model structure of the aircraft as the test object and is a semi-physical simulation test technique. Aerodynamic simulation loading devices, such as shakers, are used to simulate the distributed aerodynamic loads on the structure, so that the aeroelastic stability characteristics of the real structure can be obtained on the ground (outside the wind tunnel). In this paper, the research status of GFST technology is analyzed from three aspects: reduced-order real-time reconstruction of the unsteady aerodynamic, the unsteady aerodynamic simulation loading and the implementation of GFST. Finally, the future development direction of GFST technology is prospected.

参考文献

[1] 谷迎松, 杨智春, 赵令诚. 飞行器气动弹性力学教程[M]. 西安:西北工业大学出版社, 2021.
[2] 张桂玮, 谭光辉, 徐钦炜, 等. 地面颤振模拟试验中加载系统动态特性的影响研究[J]. 振动与冲击, 2020, 39(16):214-221+260.
[3] 侯英昱, 付志超, 朱剑, 等. 气动力模拟非接触式加载方法研究[J]. 空气动力学学报, 2018, 36(2):357-361.
[4] Hou Y, Liu Z. Aeroelastic test of large flexible structure based on electromagnetic dry wind tunnel[C]. Asia-Pacific International Symposium on Aerospace Technology, 2019:2684-2691.
[5] 侯英昱, 刘子强. 基于电磁干风洞的大柔性结构准模态试验研究[J]. 空气动力学学报, 2019, 37(1):115-120.
[6] Hou Y, Zhu J, Fu Z. Computer-aided physical test technology[C]. 4th International Conference on Computer Science and Application Engineering, CSAE 2020, October 20, 2020 - October 22, 2020, 2020:Association for Science and Engineering (ASciE).
[7] Hou Y, Li Q, Zhang Z. Unsteady Aerodynamic Simulation Test Based on Ampere Force and Electromagnetic Field[C]. Journal of Physics: Conference Series, 2022:012037.
[8] 赵永辉. 气动弹性力学与控制[M]. 北京:科学出版社, 2007.
[9] 万志强, 杨超. 飞行器飞行载荷分析与气动弹性优化[M]. 北京:航空工业出版社, 2021.
[10] 宋巧治. 基于鲁棒控制的多点激励力控制系统设计[D]. 西北工业大学, 2014.
[11] Zeng J, Kingsbury D, Ritz E, et al. GVT-based ground flutter test without wind tunnel[C]. Proceeding of 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011.
[12] 胡巍, 杨智春, 谷迎松. 带操纵面机翼气动弹性地面试验仿真系统中的气动力降阶方法[J]. 西北工业大学学报, 2013, (05):810-815.
[13] 许云涛. 地面颤振模拟试验方法研究[D]. 北京航空航天大学, 2012.
[14] 叶正寅, 张伟伟, 史爱明. 流固耦合力学基础及其应用[M]. 流固耦合力学基础及其应用, 2010.
[15] Wang B, Fan X. Ground flutter simulation test based on reduced order modeling of aerodynamics by CFD/CSD coupling method[J]. International Journal of Applied Mechanics, 2019, 11(01).
[16] 宋巧治, 王彬文, 李晓东. 基于CFD的地面颤振模拟试验非定常气动力重构方法研究[J]. 振动与冲击, 2022, 41(10):40-46.
[17] Peters D, Johnson M. Finite-state airloads for deformable airfoils on fixed and rotating wings[J]. Asme-Publications-AD, 1994, 44:1-1.
[18] Lee B, Gong L, Wong Y. Analysis and computation of nonlinear dynamic response of a two-degree-of-freedom system and its application in aeroelasticity[J]. Journal of Fluids and Structures, 1997, 11(3):225-246.
[19] 王俊蛟. 非定常气动铰链力矩理论分析与试验系统研究[D]. 北京交通大学, 2018.
[20] 邓智, 宋汉文. 基于反馈控制的桥梁节段模型干风洞实验仿真[J]. 振动与冲击, 2017, 36(5):120-126.
[21] Kearns J. Flutter simulator:US3003960A[P]. 1960.
[22] Su W, Song W. A real-time hybrid aeroelastic simulation platform for flexible wings[J]. Aerospace Science and Technology, 2019, 95:105513.
[23] Su W, Song W, Hill V. Real-time hybrid simulation and experiment for aeroelastic testing of flexible wings[C]. AIAA Scitech 2019 Forum, 2019:2032.
[24] Su W, Song W. Stability of real-time hybrid aeroelastic simulations with actuation and sensor measurement delays[C]. AIAA SCITECH 2022 Forum, 2022:0525.
[25] Kearns J. Missile-wing flutter simulation[J]. Johns Hopkins University Applied Physics Laboratory Technical Digest 1963.
[26] Wu Z, Chu L, Yuan R, et al. Studies on aeroservoelasticity semi-physical simulation test for missiles[J]. Science China-Technological Sciences, 2012, 55(9):2482-2488.
[27] Liseykin G, Markin I, Pronin M, et al. Physical model vibration modeling using artificial flow[J]. TsAGI Science Journal, 2019, 50(1):103–113.
[28] Bykov A, Kondrashev G, Parafes S, et al. Methods for investigating the unmanned aerial vehicle electric actuator performance in aeroelasticity tasks[J]. Russian Aeronautics (Iz VUZ), 2016, 59(3):331-337.
[29] Wu Z, Zhang R, Ma C, et al. Aeroelastic semiphysical simulation and wind-tunnel testing validation of a fin–actuator system[J]. Journal of Aircraft, 2017, 54(1):235-245.
[30] Smyslov V. Tasks of the modal test and reproduction of forces by means of electromechanical simulation[J]. TsAGI Science Journal, 2017, 48(8):761–771.
[31] Baranov N, Vasiljev K, Narizhny A, et al. Experimental investigation of the all-flying stabilizer flutter with nonlinear characteristics in the control links using aerodynamic forces electromechanical simulation[J]. Uchenye Zapiski TsAGI, 1983, XIV(3).
[32] Liseykin G, Bogatyrev M, Pronin M, et al. Research on dynamic stability of an elastic model using tests in artificial flow[C]. 16th International Forum on Aeroelasticity and Structural Dynamics, IFASD 2015, June 28, 2015 - July 2, 2015, 2015:Polytec.
[33] Naryzhny A, Pedora A, Smyslov V. Vibration tests with airflow simulation in the aeroelastic investigations on dynamically scaled models[J]. Uchenye Zapiski TsAGI, 2001, 32(1–2).
[34] 潘树祥, 齐丕骞. 地面模拟热颤振试验研究[J]. 强度与环境, 1984, (02):8-12.
[35] Dhital K, Han J, Lee Y. Approximation of distributed aerodynamic force to a few concentrated forces for studying supersonic panel flutter[J]. Transactions of the Korean Society for Noise and Vibration Engineering, 2016, 26(5):518-527.
[36] Karpel M. Extensions to the minimum-state aeroelastic modeling method[J]. AIAA Journal, 1991, 29(11):2007-2009.
[37] 胡巍. 变体飞行器动力学建模及气动弹性特性研究[D]. 西北工业大学, 2017.
[38] 宋巧治, 李晓东. 平板翼颤振地面模拟试验机理研究[J]. 结构强度研究, 2016, (1):1-7.
[39] Dhital K, Han J. Panel flutter emulation using a few concentrated forces[J]. International Journal of Aeronautical and Space Sciences, 2018, 19(1):80-88.
[40] 李秋彦, 李刚, 魏洋天, 等. 先进战斗机气动弹性设计综述[J]. 航空学报, 2020, 41(06):44-70.
[41] 陈浩宇, 王彬文, 宋巧治, 等. 热颤振地面模拟试验技术研究[J]. 航空学报, 2022:1-12.
[42] 陈浩宇, 王彬文, 宋巧治, 等. 时变系统地面颤振模拟试验方法研究[J]. 应用力学学报, 2022, 39(04):633-641.
[43] 许云涛, 吴志刚, 杨超. 地面颤振模拟试验中的非定常气动力模拟[J]. 航空学报, 2012, 33(11):1947-1957.
[44] 高博. 地面颤振试验系统动力学建模与控制仿真技术研究[D]. 中国航天科技集团公司第一研究院, 2018.
[45] 宋巧治, 王彬文, 李晓东. 基于机翼颤振风洞试验模型的地面颤振模拟试验验证[J]. 工程与试验, 2021, 61(02):3-7.
[46] 黎伟明, 宋巧治, 刘继军. 地面颤振试验系统气动插值点优化配置方法研究[J]. 应用力学学报, 2022, 39(03):445-451.
[47] Dhital K, Han J. Subsonic flutter emulation of composite laminate using a few concentrated forces[C]. 21st International Conference on Composite Materials, ICCM 2017, August 20, 2017 - August 25, 2017, 2017.
[48] Yun J, Han J. Development of ground vibration test based flutter emulation technique[J]. Aeronautical Journal, 2020, 124(1279):1436-1461.
[49] Yun J, Han J. Application of ground flutter emulation test technique for the passive flutter suppression effect validation[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(6):1344-1355.
[50] Wu Z, Ma C, Yang C. New approach to the ground flutter simulation Test[J]. Journal of Aircraft, 2016, 53(5):1575-1580.
[51] Kearns J. A ground flutter simulator[R]. Laurel, Maryland: Johns Hopkins University Applied Physics Laboratory, 1957.
[52] Kearns J. Flutter simulation[R]. Laurel, Maryland: Johns Hopkins University Applied Physics Laboratory, 1962.
[53] 曹登庆, 李基鹏, 邵崇晖. 一种分布式气动力与有限激振点激振载荷的等效方法:CN113218615A[P]. 2021-06-03.
[54] 刘楚源. 基于特征值跟踪的气动弹性载荷等效与简化[D]. 同济大学, 2019.
[55] 刘楚源, 刘泽森, 宋汉文. 基于主动控制策略的机翼颤振特性模拟[J]. 力学学报, 2019, 51(02):333-340.
[56] Zhang Z, Gao B, Wang J, et al. A generalised force equivalence-based modelling method for a dry wind-tunnel flutter test system[J]. Aeronautical Journal, 2021, 125(1286):720-741.
[57] 茹科夫斯基. 气动弹性[M]. 上海:上海交通大学出版社, 2020.
[58] Zhang G, Yang Z, Gu Y. New approach to aerodynamic reduction in ground flutter simulation based on generalized aerodynamics[C]. Proceeding of 26th International Congress on Sound and Vibration, 2019.
[59] 张桂玮, 杨智春, 宋巧治, 等. 一种基于广义气动力的非定常气动力降阶方法. 2019-06-25.
[60] 张桂玮. 考虑激振器特性的地面颤振模拟试验[D]. 西北工业大学, 2022.
[61] 邵崇晖. 超声速流中壁板颤振的抑制和地面试验研究[D]. 哈尔滨工业大学, 2017.
[62] Karkle P, Narizhny A, Smyslov V. Test bench investigation of random aircraft vibrations using electromechanical simulation of aerodynamic forces under different flight conditions.[J]. Uchenye Zapiski TsAGI, 1998, XXIX(1-2):157-164.
[63] Smyslov V, Dijkstra K, Karkle P. The experience in ground vibration tests of flexible flying vehicles using PRODERA equipment and some additional tasks[C]. European Conference for Aerospace Sciences (EUCASS), 2005.
[64] Smyslov V. Study of problems of aeroelastic stability of flight vehicles with playback of the aerodynamic forces at low Strouhal numbers[J]. Zapiski TsAGI, 2006, 37(1-2):99-105.
[65] Liseykin G, Bogatyrev M, Pronin M, et al. Structural nonlinearities simulation on the flutter electromechanical modeling test bench[C]. 29th Congress of International Council of the Aeronautical Sciences, 2014:7-12.
[66] Orlova O, Pronin M, Smyslov V. Numerical simulation and experimental flutter research of an aircraft with asymmetric control surfaces[J]. 17-th Internationalroelasticity and Structural Dynamics, IFASD, 2017.
[67] Leonteva R, Smyslov V. Features of simulating the force actions from a damaged engine at ground vibration tests of an airplane[J]. TsAGI Science Journal, 2016, 47(6):649–663.
[68] Leonteva R, Pronin M, Smyslov V. Modeling of forced vibrations of the airplane with the engine imbalance аt ground resonance tests[C]. 17th International Forum on Aeroelasticity and Structural Dynamics, IFASD 2017, 2017.
[69] Song Q, Yang Z, Wang W. Robust control of exciting force for vibration control system with multi-exciters[J]. Science China-Technological Sciences, 2013, 56(10):2516-2524.
[70] 郭嘉瑞. 激励力源系统动力学特性研究[D]. 中北大学, 2020.
[71] Ma C, Wu Z, Yang C. Determination of the dynamic characteristics of a multi-point excitation system using electrodynamic shakers and control of their exciting force[J]. Journal of Vibration Engineering & Technologies, 2016, 4(2):161-173.
[72] Yun J, Han J, Lee Y. MIMO force control of electro-dynamic shaker system using inverse transfer function based controller[J]. Transactions of the Korean Society for Noise and Vibration Engineering, 2018, 28(1):5-13.
[73] Tomlinson G. Force distortion in resonance testing of structures with electro-dynamic vibration exciters[J]. Journal of Sound and Vibration, 1979, 63(3):337-350.
[74] Rao D. On the 'glitches' in the force transmitted by an electrodynamic exciter to a structure[C]. Proceeding of 58th Shock and Vibration Symposium, 1987:245-255.
[75] Olsen N. Using and understanding electrodynamic shakers in modal applications[C]. Proceedings of the 4th International Modal Analysis Conference, Los Angeles, California, USA, 1986:1160-1167.
[76] Rao D. Electrodynamic interaction between a resonating structure and an exciter[C]. Proceedings of the 5th International Modal Analysis Conference, 1987:1142-1150.
[77] Lang G. Electrodynamic shaker fundamentals[J]. Sound and Vibration, 1997, 31(4):14-23.
[78] Lang G, Snyder D. Understanding the physics of electrodynamic shaker performance[J]. Sound and Vibration, 2001, 35(10):24-33.
[79] Saraswat A, Tiwari N. Modeling and study of nonlinear effects in electrodynamic shakers[J]. Mechanical Systems and Signal Processing, 2017, 85:162-176.
[80] Oliveira L, Varoto P. The effects of armature rotation on data quality in base driven shaker testing[C]. ISMA 27-International Conference on Noise and Vibration Engineering. Leuven, Belgium, 2002:911-918.
[81] Waimer S, Manzato S, Peeters B, et al. A multiphysical modelling approach for virtual shaker testing correlated with experimental test results [M]. Special Topics in Structural Dynamics, Volume 6. 2016: 87-99.
[82] Hoffait S, Marin F, Simon D, et al. Measured-based shaker model to virtually simulate vibration sine test[J]. Case Studies in Mechanical Systems and Signal Processing, 2016, 4:1-7.
[83] Hoffait S, Marin F, Simon D, et al. Virtual shaker testing at V2i: measured-based shaker model and industrial test case[C]. Proceedings of 27th International Conference on Noise and Vibration Engineering and International Conference on Uncertainty in Structural Dynamics, 2016:1013-1026.
[84] Zuo S, Feng Z, Pan J, et al. Electromechanical coupling dynamic modeling and analysis of vertical electrodynamic shaker considering low frequency lateral vibration[J]. Advances in Mechanical Engineering, 2020, 12(10):16.
[85] Rao D, Dill J, Zorzi E. Magnetic suspension characteristics of electromagnetic actuators[R]. 1993.
[86] Tomlinson G. A simple theoretical and experimental study of the force characteristics from electrodynamic exciters on linear and nonlinear systems[C]. Proceedings of the 5th International Modal Analysis Conference, 1987:1479–1486.
[87] Varoto P, De Oliveira L. Interaction between a vibration exciter and the structure under test[J]. Sound and Vibration, 2002, 36(10):20-26.
[88] Varoto P, De Oliveira L. On the force drop off phenomenon in shaker testing in experimental modal analysis[J]. Shock and Vibration, 2002, 9(4-5):165-175.
[89] De Oliveira L, Varoto P, Peres M. Shaker structure interaction: Overview and updated results[C]. Proceeding of 18th International Congress on Sound and Vibration, 2011:2516-2523.
[90] Pacini B, Kuether R, Roettgen D. Shaker-structure interaction modeling and analysis for nonlinear force appropriation testing[J]. Mechanical Systems and Signal Processing, 2022, 162:108000.
[91] Zhang G, Wang X, Yang Z. Study on excitation force characteristics in a coupled shaker-structure system considering structure modes coupling[J]. Chinese Journal of Aeronautics, 2021, 35(7):227-245.
[92] Dargah M. Effects of the shaker impedance and transducer cross-axis sensitivity in frequency response function estimation[D]. University of Cincinnati, 2012.
[93] Dargah M, Allemang R, Phillips A. Exciter impedance and cross-axis sensor sensitivity issues in FRF estimation[C]. Proceedings of the 30th IMAC, 2012:535-545.
[94] Peres M, Kallmeyer C, Witter M, et al. Advantages of multiple-input multiple-output (MIMO) testing using low level excitation systems[C]. Proceedings of the 26th International Conference on Noise and Vibration Engineering, 2014:1121-1134.
[95] Peres M, Kallmeyer C, Witter M, et al. Advantages of multiple-input multiple-output Testing[J]. Sound and Vibration, 2015, 49(8):8-12.
[96] Mayes R, Ankers L, Daborn P, et al. Optimization of shaker locations for multiple shaker environmental testing[J]. Experimental Techniques, 2020, 44(3):283-297.
[97] 张忠, 高博, 原凯, 等. 电磁激振器建模与实时控制方法研究[J]. 强度与环境, 2018, 45(05):28-34.
[98] Schultz R. Vibration test design with integrated shaker electro-mechanical models[C]. Proceeding of the 38th IMAC, 2020:63-72.
[99] Zhang G, Li W, Wang X, et al. Influence of flexible structure vibration on the excitation forces delivered by multiple electrodynamic shakers[J]. Mechanical Systems and Signal Processing, 2022, 169:108753.
[100] Ma C, Wu Z, Yang C. Mechanical characteristics of electromagnetic shakers and its force control[C]. 52nd Aerospace Sciences Meeting, 2014.
[101] 王彬文, 宋巧治, 陈浩宇. 高超声速飞行器地面颤振评估技术研究[J]. 南京航空航天大学学报, 2022, 54(05):899-907.
[102] 许云涛, 吴志刚, 杨超. 地面颤振模拟试验仿真研究[C]. 第十三届全国空气弹性学术交流会论文集, 哈尔滨, 2013:404-409.
[103] 徐朝阳. 大展弦比机翼颤振及状态监测研究[D]. 南京航空航天大学, 2016.
文章导航

/