流体力学与飞行力学

基于端壁L形凹槽的扩压叶栅角区分离控制

  • 王博 ,
  • 吴艳辉 ,
  • 黄令举 ,
  • 王子胥
展开
  • 1.西北工业大学 动力与能源学院,西安 710129
    2.陕西省航空发动机内流动力学重点实验室,西安 710129
.E-mail: wyh@nwpu.edu.cn

收稿日期: 2023-06-21

  修回日期: 2023-08-25

  录用日期: 2023-09-27

  网络出版日期: 2023-10-24

基金资助

国家自然科学基金(52176045);国家科技重大专项(2017-Ⅱ-0010-0024)

Corner separation control in compressor cascade based on L-shaped endwall groove

  • Bo WANG ,
  • Yanhui WU ,
  • Lingju HUANG ,
  • Zixu WANG
Expand
  • 1.School of Power and Energy,Northwestern Polytechnical University,Xi’an  710129,China
    2.Shaanxi Key Laboratory of Internal Aerodynamics in Aero-Engine,Xi’an  710129,China
E-mail: wyh@nwpu.edu.cn

Received date: 2023-06-21

  Revised date: 2023-08-25

  Accepted date: 2023-09-27

  Online published: 2023-10-24

Supported by

National Natural Science Foundation of China(52176045);National Science and Technology Major Project (2017-Ⅱ-0010-0024)

摘要

为了解决用于控制压气机角区分离的旋涡发生器技术存在的不足,以高速扩压叶栅为研究对象,深入探究了利用端壁L形凹槽结构产生的流向涡抑制压气机角区分离的流动控制策略。首先,通过引入标准造型空间和函数叠合思想,为端壁L形凹槽结构发展了一种便捷且通用的参数化建模方法,并基于该方法开展了端壁L形凹槽的优化设计。通过比较原型叶栅和最优方案的流场仿真结果发现:端壁L形凹槽可以通过其产生的槽道分离涡来有效阻挡横向二次流,切断端壁低能流体向角区的供应,从而显著缓解角区反流、阻止角区分离伴生旋涡的形成,能够在宽广的攻角范围内显著改善叶栅的气动性能。对比不同Pareto最优方案的计算结果发现:槽道分离涡的旋涡强度决定了凹槽对横向二次流的控制效果以及引入附加流动损失和堵塞效应的严重程度,这是影响流动控制效果的关键因素。然后,将基于Sobol指标法的灵敏度分析方法与控制变量法相结合分析了设计参数对端壁L形凹槽流动控制效果的影响。结果表明:凹槽切向位置、凹槽深度、上游凹槽宽度和上游凹槽长度对凹槽的流动控制效果影响较为显著;其中凹槽切向位置主要影响槽道分离涡距离吸力面角区的远近,而后三者则主要影响槽道分离涡的旋涡强度。最后,基于以上分析,总结了端壁L形凹槽的设计参数选取原则。

本文引用格式

王博 , 吴艳辉 , 黄令举 , 王子胥 . 基于端壁L形凹槽的扩压叶栅角区分离控制[J]. 航空学报, 2024 , 45(10) : 129206 -129206 . DOI: 10.7527/S1000-6893.2023.29206

Abstract

To overcome the shortcomings of current vortex generator techniques used to control corner separation in compressors, we investigate the mitigation of corner separations using the streamwise vortex generated by the L-shaped endwall groove in a high-speed compressor cascade. First of all, a convenient and universal parametric modeling method for the L-shaped endwall groove has been proposed by introducing the standard modeling space and function superposition strategy, and the L-shaped endwall groove optimization was conducted based on this method. The simulated flow fields of the baseline cascade and a Pareto-optimal case have been compared. It was found that the groove separation vortex generated by the L-shaped groove could effectively block the endwall cross flow, cut off the supply of low momentum endwall fluid to the corner region, and therefore significantly mitigated the reverse flow in the corner region and avoid the formation of the corner separation vortex, remarkably improving the cascade performance within a wide range of incidence. Calculated results of different Pareto-optimal cases have been compared. The results show that the strength of the groove separation vortex determines the control effect of the groove on the endwall cross flow and the severity of additional loss and blockage caused by the groove, and thus is the key factor influencing the control effect of the L-shaped endwall groove. Secondly, the influence of design parameters on the L-shaped endwall groove and its mechanism have been analyzed through the combined use of the Sobol indices-based sensitivity analysis method and conventional control variate method. It was found that the control effect of the endwall groove was significantly influenced by four design parameters including the pitchwise location of the groove, groove depth, the width and length of the upstream groove. The pitchwise location of the groove determined the distance between the groove separation vortex and suction-side corner region, while the other three mainly influenced the strength of the groove separation vortex. Finally, a guideline for selecting design parameters of the L-shaped endwall groove has been summarized based on the above analyses.

参考文献

1 HORLOCK J H, LOUIS J F, PERCIVAL P M E, et al. Wall stall in compressor cascades[J]. Journal of Basic Engineering196688(3): 637-648.
2 DRING R P, JOSLYN H D, HARDIN L W. An investigation of axial compressor rotor aerodynamics[J]. Journal of Engineering for Power1982104(1): 84-96.
3 JOSLYN H D, DRING R P. Axial compressor stator aerodynamics[J]. Journal of Engineering for Gas Turbines and Power1985107(2): 485-492.
4 DODDS J, VAHDATI M. Rotating stall observations in a high speed compressor—Part Ⅱ: Numerical study[J]. Journal of Turbomachinery2015137(5): 051003.
5 YAMADA K, FURUKAWA M, TAMURA Y, et al. Large-scale DES analysis of stall inception process in a multi-stage axial flow compressor: GT2016-57104[R]. New York: ASME, 2016.
6 DICKENS T, DAY I. The design of highly loaded axial compressors[J]. Journal of Turbomachinery2011133(3): 031007.
7 HERGT A, MEYER R, ENGEL K. Effects of vortex generator application on the performance of a compressor cascade[J]. Journal of Turbomachinery2013135(2): 021026.
8 HERGT A, MEYER R, MüLLER M, et al. Loss Re-duction in compressor cascades by means of passive flow control: GT2008-50357[R]. New York: ASME, 2008.
9 ORTMANNS J, PIXBERG C, GüMMER V. Numerical investigation of vortex generators to reduce cross-passage flow phenomena in compressor stator end-walls[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy2011225(7): 877-885.
10 李金鸽, 楚武利, 张皓光, 等. 楔形涡流发生器影响高负荷叶栅性能的机理研究[J]. 推进技术201738(10): 2331-2339.
  LI J G, CHU W L, ZHANG H G, et al. Mechanism investigation of effects of plow vortex generator on high-load compressor cascade[J]. Journal of Propulsion Technology201738(10): 2331-2339 (in Chinese).
11 刘艳明, 汪亮, 尚东然, 等. 基于端壁涡流发生器的压气机叶栅角区分离控制研究[J]. 推进技术201940(6): 1285-1292.
  LIU Y M, WANG L, SHANG D R, et al. Investigation of corner separation control for compressor cascade based on endwall vortex generator[J]. Journal of Propulsion Technology201940(6): 1285-1292 (in Chinese).
12 LI J B, JI L C. Efficient design method for applying vortex generators in turbomachinery[J]. Journal of Turbomachinery2019141(8): 081005.
13 FENG Y Y, SONG Y P, CHEN F, et al. Effect of endwall vortex generator jets on flow separation control in a linear compressor cascade[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2015229(12): 2221-2230.
14 LI L T, SONG Y P, CHEN F, et al. Flow control on bowed compressor cascades using vortex generator jet at different incidences[J]. Journal of Aerospace Engineering201730(5): 04017028.
15 CHEN C, CHEN F, YU J Y. Experimental investigation of end-wall VGJs in a compressor cascade[J]. Applied Thermal Engineering2018145: 386-395.
16 陈聪. 射流旋涡发生器对轴流压气机流动分离控制及其优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 122-140.
  CHEN C. Investigation of flow separation control and optimization of vortex generator jets for axial flow compressor[D]. Harbin: Harbin Institute of Technology, 2020: 122-140 (in Chinese).
17 伊卫林, 唐方明, 陈志民, 等. 改善压气机端区流动的新方法: 前缘边条叶片技术[J]. 航空动力学报201530(7): 1691-1698.
  YI W L, TANG F M, CHEN Z M, et al. New approach to improve the endwall flow of compressor—Leading edge strake blade technique[J]. Journal of Aerospace Power201530(7): 1691-1698 (in Chinese).
18 DORFNER C, HERGT A, NICKE E, et al. Advanced nonaxisymmetric endwall contouring for axial compressors by generating an aerodynamic separator—Part I: Principal cascade design and compressor application[J]. Journal of Turbomachinery2011133(2): 021026.
19 HERGT A, DORFNER C, STEINERT W, et al. Advanced nonaxisymmetric endwall contouring for axial compressors by generating an aerodynamic separator—Part II: Experimental and numerical cascade investigation[J]. Journal of Turbomachinery2011133(2): 021027.
20 GERMAIN T, NAGEL M, RAAB I, et al. Improving efficiency of a high work turbine using nonaxisymmetric endwalls—Part I: Endwall design and performance[J]. Journal of Turbomachinery2010132(2): 021007.
21 李相君. 高负荷轴流压气机端区流动机制及被动控制[D]. 西安: 西北工业大学, 2018: 35-41.
  LI X J. The mechanism and passive control of endwall flow in high-load axial flow compressors[D].Xi’an: Northwestern Polytechnical University, 2018: 35-41 (in Chinese).
22 LIESNER K. Grenzschichtabsaugung zur wirkungsgradsteigerung in einer verdichterkaskade[D]. Berlin: Technische Universit?t Berlin, 2016: 44-100.
23 WANG B, WU Y H. Vortical characteristics of the corner separation flow in a high-speed compressor cascade[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science2022236(15): 8300-8320.
24 HERGT A, MEYER R, LIESNER K, et al. A new ap-proach for compressor endwall contouring: GT2011-45858[R]. New York: ASME, 2004.
25 HUNT J, WRAY A, Eddies MOIN P., stream, and con-vergence zones in turbulent flows: N89-24555[R]. Washington, D.C.: NASA, 1988.
26 SUJUDI D, HAIMES R. Identification of swirling flow in 3-D vector fields[C]∥Proceedings of the 12th Computational Fluid Dynamics Conference. Reston: AIAA, 1995.
27 KHALID S A, KHALSA A S, WAITZ I A, et al. Endwall blockage in axial compressors[J]. Journal of Turbomachinery1999121(3): 499-509.
28 LEPOT I, MENGISTU T, HIERNAUX S, et al. Highly loaded LPC blade and non axisymmetric hub profiling optimization for enhanced efficiency and stability: GT2011-46261[R]. New York: ASME, 2011.
29 SALTELLI A, RATTO M, ANDRES T, et al. Global sensitivity analysis. The primer[M]. Chichester: John Wiley & Sons, 2008: 155-164.
30 SALTELLI A. Making best use of model evaluations to compute sensitivity indices[J]. Computer Physics Communications2002145(2): 280-297.
文章导航

/