可重复使用运载火箭技术专栏

可重复使用运载火箭返回段低温流体行为特性

  • 容易 ,
  • 刘辉 ,
  • 于子文 ,
  • 朱平平 ,
  • 彭越 ,
  • 于佳晖
展开
  • 1.中国运载火箭技术研究院,北京 100076
    2.北京宇航系统工程研究所,北京 100076
    3.北京强度环境研究所,北京 100076

收稿日期: 2023-09-11

  修回日期: 2023-09-18

  录用日期: 2023-10-07

  网络出版日期: 2023-10-17

基金资助

国家级项目

Behavior of cryogenic propellant in return stage of reusable launch vehicle

  • Yi RONG ,
  • Hui LIU ,
  • Ziwen YU ,
  • Pingping ZHU ,
  • Yue PENG ,
  • Jiahui YU
Expand
  • 1.China Academy of Launch Vehicle Technology,Beijing 100076,China
    2.Beijing Institute of Astronautical Systems Engineering,Beijing 100076,China
    3.Beijing Institute of Structure and Environment Engineering,Beijing 100076,China

Received date: 2023-09-11

  Revised date: 2023-09-18

  Accepted date: 2023-10-07

  Online published: 2023-10-17

Supported by

National Level Project

摘要

可重复使用运载火箭在返回段复杂干扰作用下,贮箱内低温推进剂与高温气枕剧烈掺混,造成贮箱压力下降、推进剂温度升高等问题。针对垂直起降(VTVL)运载火箭返回段推进剂掺混及重定位过程开展研究,首次建立了液氧掺混后行为特性仿真模型并通过加速落塔试验进行验证,研究垂直起降运载火箭返回段复杂干扰作用下低温流体行为特性,获得推进剂形态、贮箱压力、推进剂温度及蒸发量等变化规律,为推进剂管理系统及增补压方案设计提供支撑。

本文引用格式

容易 , 刘辉 , 于子文 , 朱平平 , 彭越 , 于佳晖 . 可重复使用运载火箭返回段低温流体行为特性[J]. 航空学报, 2023 , 44(23) : 629563 -629563 . DOI: 10.7527/S1000-6893.2023.29563

Abstract

Under the complex interference of the return stage of the reusable launch vehicle, the cryogenic propellant in the tank and the high-temperature ullage are violently mixed, resulting in a series of problems, such as tank pressure drop and propellant temperature rise. In this paper, the propellant mixing and reorientation process of Vertical Take-off and Vertical Landing (VTVL) launch vehicle is studied. A simulation model of the behavior of liquid oxygen mixing is established for the first time and verified by the accelerated drop tower test. The model was used to study the behavior characteristics of cryogenic propellant under the complex interference in the return stage of a VTVL launch vehicle, and the variation laws of propellant morphology, tank pressure, propellant temperature and evaporation were obtained, which provided support for the design of propellant management system and supplementary pressure scheme.

参考文献

1 宋征宇, 黄兵, 汪小卫, 等. 重复使用航天运载器的发展及其关键技术[J]. 前瞻科技20221(1): 62-74.
  SONG Z Y, HUANG B, WANG X W, et al. Development and key technologies of reusable launch vehicle[J]. Science and Technology Foresight20221(1): 62-74 (in Chinese).
2 鲁宇, 汪小卫, 高朝辉, 等. 重复使用运载火箭技术进展与展望[J]. 导弹与航天运载技术2017(5): 1-7.
  LU Y, WANG X W, GAO C H, et al. Progress and prospect of reusable launch vehicle technology[J]. Missiles and Space Vehicles2017(5): 1-7 (in Chinese).
3 樊伟, 王林, 龙雪丹, 等. 2022年国外重复使用运载器发展综述[J]. 中国航天2023(2): 25-30.
  FAN W, WANG L, LONG X D, et al. Review of the development of foreign reusable vehicles in 2022[J]. Aerospace China2023(2): 25-30 (in Chinese).
4 朱文杰, 杜大程, 黄立钠, 等. 可重复启动低温上面级的推进剂管理装置研究[J]. 宇航总体技术20215(5): 12-17.
  ZHU W J, DU D C, HUANG L N, et al. Propellant management device concepts for multiple ignitions cryogenic upper stages[J]. Astronautical Systems Engineering Technology20215(5): 12-17 (in Chinese).
5 刘桢, 褚桂敏, 李红, 等. 运载火箭上面级微重力环境下的推进剂管理[J]. 导弹与航天运载技术2012(4): 20-26.
  LIU Z, CHU G M, LI H, et al. Propellant management of rocket upper stage in microgravity environment[J]. Missiles and Space Vehicles2012(4): 20-26 (in Chinese).
6 高朝辉, 刘宇, 肖肖, 等. 垂直着陆重复使用运载火箭对动力技术的挑战[J]. 火箭推进201541(3): 1-6, 45.
  GAO Z H, LIU Y, XIAO X, et al. Challenge to propulsion technology for vertical landing reusable launch vehicle[J]. Journal of Rocket Propulsion201541(3): 1-6, 45 (in Chinese).
7 袁森, 马志仓, 刘忠. 预弯边半径对贮箱金属膜片翻转行为的影响[J]. 机械设计与制造2018(7): 80-82, 86.
  YUAN S, MA Z C, LIU Z. Influence of pre-bending edge’s radius on the overturning behavior of metal diaphragms in tanks[J]. Machinery Design & Manufacture2018(7): 80-82, 86 (in Chinese).
8 王亚军, 刘辉, 黄兵, 等. 长时间滑行低温推进剂管理关键技术分析[J]. 宇航总体技术20226(3): 1-9, 20.
  WANG Y J, LIU H, HUANG B, et al. Key technology analysis of cryogenic propellant management during long-coast flight[J]. Astronautical Systems Engineering Technology20226(3): 1-9, 20 (in Chinese).
9 李佳超, 梁国柱, 王夕, 等. 氢氧推进剂在轨加注若干关键问题研究进展[J]. 宇航总体技术20193(6): 60-74.
  LI J C, LIANG G Z, WANG X, et al. Research progress on several key problems of on-orbit refueling technologies for hydrogen-oxygen propellants[J]. Astronautical Systems Engineering Technology20193(6): 60-74 (in Chinese).
10 王磊, 贾洲侠, 瞿淼, 等. 火箭低温上面级流体管理技术研究进展[J]. 真空与低温202127(4): 307-315.
  WANG L, JIA Z X, QU M, et al. Developing status and analysis on fluid management technology of rocket cryogenic upper stage[J]. Vacuum and Cryogenics202127(4): 307-315 (in Chinese).
11 OHASHI A, FURUICHI Y, HABA D C, et al. Experimental and numerical investigation on pressure change in cryogenic sloshing with a ring baffle[C]∥ Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2017.
12 KARTUZOVA O, KASSEMI M. Modeling interfacial turbulent heat transfer during ventless pressurization of a large scale cryogenic storage tank in microgravity[C]∥ Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2011.
13 邓新宇, 唐一华, 黄兵, 等. 推进剂重定位数值仿真[J]. 导弹与航天运载技术2009(1): 11-14.
  DENG X Y, TANG Y H, HUANG B, et al. Numerical simulation of propellant reorientation[J]. Missiles and Space Vehicles2009(1): 11-14 (in Chinese).
14 郭舜之. 高真空、微重力、冷背景下近三相点多相流数值模拟研究[D]. 兰州: 兰州交通大学, 2018.
  GUO S Z. The numerical simulation of mutiphase at triple-point under high vacuum, microgravity and cold background[D]. Lanzhou: Lanzhou Jiatong University, 2018 (in Chinese).
15 SCHRAGE R W. A theoretical study of interphase mass transfer[M]. New York: Columbia University Press, 1953.
16 SALZMAN J, MASICA W, LACOVIC R. Low gravity reorientation in a scale-model Centaur liquid-hydrogen tank: NASA-TN-D-7168[R]. Washington, D.C.: NASA, 1973.
17 孟光, 刘昶, 杨冬春, 等. 美国SpaceX超重-星舰首飞分析及对中国航天产业的启示[J]. 航空学报202344(10): 6-16.
  MENG G, LIU C, YANG D C, et al. First flight of SpaceX heavy-lift starship: Enlightenment for aerospace industry in China[J]. Acta Aeronautica et Astronautica Sinica202344(10): 6-16 (in Chinese).
18 尕永婧, 王浩苏, 张青松, 等. 垂直着陆过程推进剂流动行为特性及影响分析[J]. 深空探测学报(中英文)20218(1): 42-50.
  GA Y J, WANG H S, ZHANG Q S, et al. Propellant flow characteristics in tank and related impact analysis during the vertical landing stage[J]. Journal of Deep Space Exploration20218(1): 42-50 (in Chinese).
文章导航

/