航空发动机数字工程初步研究与发展思考
收稿日期: 2023-10-09
修回日期: 2023-10-10
录用日期: 2023-10-13
网络出版日期: 2023-10-13
基金资助
国家级项目
Preliminary investigation and thoughts on aero-engine digital engineering development
Received date: 2023-10-09
Revised date: 2023-10-10
Accepted date: 2023-10-13
Online published: 2023-10-13
Supported by
National Level Project
黄维娜 , 黎方娟 , 祁宏斌 . 航空发动机数字工程初步研究与发展思考[J]. 航空学报, 2024 , 45(5) : 529693 -529693 . DOI: 10.7527/S1000-6893.2023.29693
The high-quality development of China’s social economy and industrial system in the new era presents higher requirements for the development of aero-engines. It is urgent to improve the agile Research and Development (R&D) capability of products, strengthen the foundation of independent R&D, and improve customer satisfaction by means of systematization of digital engineering. The present situation and development trend of digital engineering in foreign countries were analyzed. Based on the foundation of digital engineering construction in aero-engine industry of China, the general technical framework of digital engineering for aero-engines was proposed. The application scenarios of digital engineering in the aero-engine life cycle were preliminarily defined. The key technologies of aero-engine digital engineering construction were exploratively identified and analyzed. Finally, construction and implementation suggestions were proposed, such as gradually implementing pilot projects, constructing a digital ecosystem and culture, making overall planning for calculation and supporting, and strengthening simulation reliability.
Key words: aero-engine; digital engineering; digital system model; digital thread; digital twin
1 | GRIFFIN M D, BALDWIN K. Digital engineering strategy [R]. Washington, D.C.: Office of the Deputy Assistant Secretary of Defense for Systems Engineering, 2018. |
2 | NORQUIST D L. DoD digital modernization strategy [R]. Washington, D.C.: Office of Prepublication and Security Review of Department of Defense, 2019. |
3 | BRAY W P. Digital systems engineering transformation strategy [R]. Washington, D.C.: United States Navy and Marine Corps, 2020. |
4 | HUTCHISON N, TAO H Y S, PEPE K, et al. Workforce and evaluation and training for digital engineering in the US department of defense[J]. INCOSE International Symposium, 2021, 31(1): 1271-1284. |
5 | MCDANIEL D R, TUCKEY T, MORTON S A. The HPCMP CREATETM-AV kestrel computational environment and its relation to NASA’s CFD vision 2030: AIAA-2017-0813[R]. Reston: AIAA, 2017. |
6 | KRAFT E M. Decision analytics in a lifecycle digital engineering environment: AIAA-2019-1364[R]. Reston: AIAA, 2019. |
7 | KRAFT E M. Digital engineering enabled systems engineering performance measures: AIAA-2020-0552[R]. Reston: AIAA, 2020. |
8 | VINODINI S, LEONARD B. MBSE digital system model for AF DCGS: AIAA-2018-1217[R]. Reston: AIAA, 2018. |
9 | GLAESSGEN E H, STRGEL D S. The digital twin paradigm for future NASA and U.S. Air Force vehicles: AIAA-2012-1818[R]. Reston: AIAA, 2012. |
10 | 刘亚威. 美军航空装备采办正向数字工程转型[J]. 航空科学技术, 2019, 30(6): 81-82. |
LIU Y W. US military aviation equipment acquisition is transforming into digital engineering[J]. Aeronautical Science & Technology, 2019, 30(6): 81-82 (in Chinese). | |
11 | 张冰, 李欣, 万欣欣. 从数字孪生到数字工程建模仿真迈入新时代[J]. 系统仿真学报, 2019, 31(3): 369-376. |
ZHANG B, LI X, WAN X X. From digital twin to digital engineering modeling and simulation entering a new era[J]. Journal of System Simulation, 2019, 31(3): 369-376 (in Chinese). | |
12 | 崔艳林, 王巍巍, 王乐. 美国数字工程战略实施途径[J]. 航空动力, 2021(4): 84-86. |
CUI Y L, WANG W W, WANG L, et al. US digital engineering implementation strategy[J]. Aerospace Power, 2021(4): 84-86 (in Chinese). | |
13 | 刘秀罗, 吴枫, 王佳, 等. 美军数字工程战略及进展研究[J]. 国防科技, 2022, 43(3): 27-35. |
LIU X L, WU F, WANG J, et al. A study on the U.S. digital engineering strategy and its progress[J]. National Defense Technology, 2022, 43(3): 27-35 (in Chinese). | |
14 | 王巍巍, 李茜, 崔艳林. XA100自适应变循环发动机首次试验达标的启示[J]. 国际航空, 2021(10): 58-61. |
WANG W W, LI Q, CUI Y L. GE XA100 running to future[J]. International Aviation, 2021(10): 58-61 (in Chinese). | |
15 | KOBRYN P, TUEGEL E, GEFFREY Z, et al. Digital thread and twin for systems engineering: EMD to disposal: AIAA-2017-0876[R]. Reston: AIAA, 2017. |
16 | 陈建伟, 杨春雷, 杨亮, 等. 美军数字工程最新进展及趋势分析研究[J]. 导弹与航天运载技术(中英文), 2023(1): 153-156. |
CHEN J W, YANG C L, YANG L, et al. Research on the latest progress and trend of US military digital engineering[J]. Missiles and Space Vehicles, 2023(1): 153-156 (in Chinese). | |
17 | GE. What is predix machine[EB/OL]. [2023-11-07]. . |
18 | Working Group TechNet. Planieropria roadmap“TechNet”[R]. Petersburg: Working Group TechNet., 2021 (in Russian). |
19 | 张强, 李茜, 王乐. 罗罗数字化转型之路[J]. 航空动力, 2023(2): 24-27. |
ZHANG Q, LI Q, WANG L. The digital transformation road of rolls-royce[J]. Aerospace Power, 2023(2): 24-27 (in Chinese). | |
20 | 张彪, 李嘉欣, 于硕, 等. 中国航发集成研发系统建设方案概述[J]. 航空动力, 2021(6): 63-67. |
ZHANG B, LI J X, YU S, et al. Development scheme for aero engine collaborative design management system[J]. Aerospace Power, 2021(6): 63-67 (in Chinese). | |
21 | 黄博, 姚烨, 王佳川. 航空发动机数值仿真智能综合集成平台架构研究[J]. 计算机集成制造系统, 2022, 28(7): 2112-2118. |
HUANG B, YAO Y, WANG J C. Architecture of intelligent integrated platform for aero-engine numerical simulation[J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 2112-2118 (in Chinese). | |
22 | 张卫善, 方隽, 黄博, 等. 商用航空发动机产品研发体系中台研究与探索[J]. 航空动力, 2021(4): 74-78. |
ZHANG W S, FANG J, HUANG B, et al. Research and exploration of middle-platform for commercial aero engine product research and development system[J]. Aerospace Power, 2021(4): 74-78 (in Chinese). | |
23 | 邱明星, 宋柳丽, 史妍妍. 研发体系建设与型号研制的相互融合[J]. 航空动力, 2018(4): 63-66. |
QIU M X, SONG L L, SHI Y Y. Concurrent management of RDS building & project development[J]. Aerospace Power, 2018(4): 63-66 (in Chinese). | |
24 | 郭荣飞, 陈伟, 李晓艳. 航空发动机生产过程设计制造协同研究与应用[J]. 内燃机与配件, 2020(5): 16-18. |
GUO R F, CHEN W, LI X Y. Research and application of collaborative design and manufacturing in aero-engine production process[J]. Internal Combustion Engine & Parts, 2020(5): 16-18 (in Chinese). | |
25 | 徐俊恩, 陈海鹏. 基于系统工程的航空发动机协同研制流程设计[J]. 现代信息科技, 2017, 1(1): 74-76. |
XU J E, CHEN H P. Design of aero engine collaborative development process based on system engineering[J]. Modern Information Technology, 2017, 1(1): 74-76 (in Chinese). | |
26 | 罗婷婷. 基于系统工程的商用航空发动机研制需求管理方法研究[J]. 航空制造技术, 2015, 58(3): 107-109, 112. |
LUO T T. System engineering-based requirement management method for commercial aeroengine[J]. Aeronautical Manufacturing Technology, 2015, 58(3): 107-109, 112 (in Chinese). | |
27 | 李昌红, 张德志, 谈梦妮, 等. 航空发动机系统工程策划研究[J]. 航空动力, 2020(5): 56-61. |
LI C H, ZHANG D Z, TAN M N, et al. Research on the system engineering plan for aero engine[J]. Aerospace Power, 2020(5): 56-61 (in Chinese). | |
28 | 李伟. 基于系统工程的航空发动机标准体系建设研究[J]. 航空标准化与质量, 2016(6): 10-13. |
LI W. Research on the construction of aeroengine standard system based on system engineering[J]. Aeronautic Standardization & Quality, 2016(6): 10-13 (in Chinese). | |
29 | 郭放, 吴晶峰, 杨子江, 等. 基于系统工程的航空发动机安全性评估追溯模型框架[J]. 内燃机与配件, 2020(5): 171-173. |
GUO F, WU J F, YANG Z J, et al. Traceability model framework of aero-engine safety evaluation based on system engineering[J]. Internal Combustion Engine & Parts, 2020(5): 171-173 (in Chinese). | |
30 | 张玉金, 黄博, 廖文和. 面向场景的航空发动机基于模型的系统工程设计[J]. 计算机集成制造系统, 2021, 27(11): 3093-3102. |
ZHANG Y J, HUANG B, LIAO W H. MBSE unified modeling and design method of commercial aeroengine for operation scenario[J]. Computer Integrated Manufacturing Systems, 2021, 27(11): 3093-3102 (in Chinese). | |
31 | 朱静, 杨晖, 高亚辉, 等. 基于模型的系统工程概述[J]. 航空发动机, 2016, 42(4): 12-16. |
ZHU J, YANG H, GAO Y H, et al. Summary of model based system engineering[J]. Aeroengine, 2016, 42(4): 12-16 (in Chinese). | |
32 | 李琛, 吴新, 崔利丰, 等. 基于MBSE思想的航空发动机控制系统设计方法[J]. 航空发动机, 2021, 47(4): 123-130. |
LI C, WU X, CUI L F, et al. Design method of aeroengine control system based on MBSE thought[J]. Aeroengine, 2021, 47(4): 123-130 (in Chinese). | |
33 | 南长峰, 孟祥海, 蔡真. 复杂产品数字样机开发的关键技术[J]. 航空制造技术, 2011, 54(22): 49-52. |
NAN C F, MENG X H, CAI Z. Key technology for digital mock-up research and development of complex product[J]. Aeronautical Manufacturing Technology, 2011, 54(22): 49-52 (in Chinese). | |
34 | 李中祥, 江和甫, 郭迎清. 航空发动机管路系统数字化设计[J]. 燃气涡轮试验与研究, 2006, 19(3): 47-52. |
LI Z X, JIANG H F, GUO Y Q. Aero-engine pipe system digital development[J]. Gas Turbine Experiment and Research, 2006, 19(3): 47-52 (in Chinese). | |
35 | 张定华, 李山. 航空发动机数字化协同平台关键技术研究[J]. 中国制造业信息化, 2009, 38(17): 35-39, 44. |
ZHANG D H, LI S. Key technology of aero engine digitalized collaborative platform[J]. Manufacture Information Engineering of China, 2009, 38(17): 35-39, 44 (in Chinese). | |
36 | 曲慧杨, 朱耀琴, 蒲睿英, 等. 复杂装备虚拟采办平台技术研究[J]. 系统仿真学报, 2018, 30(12): 4677-4685, 4692. |
QU H Y, ZHU Y Q, PU R Y, et al. Simulation-based acquisition platform for complex equipment[J]. Journal of System Simulation, 2018, 30(12): 4677-4685, 4692 (in Chinese). | |
37 | 王爱文, 曲慧杨, 周军华, 等. 虚拟采办全寿命周期管理技术研究及应用[J]. 系统仿真学报, 2012, 24(10): 2126-2130. |
WANG A W, QU H Y, ZHOU J H, et al. Research and application on SBA life-cycle management technology[J]. Journal of System Simulation, 2012, 24(10): 2126-2130 (in Chinese). | |
38 | ZWEBER G, KOLONAY R, KOBRYN P, et al. Digital thread and twin for systems engineering: Pred-MDD through TMRR: AIAA-2017-0875[R]. Reston: AIAA, 2017. |
39 | ZIMMERMAN P, GILBERT T, SALVATORE F. Digital engineering transformation across the Department of Defense[J]. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 2019, 16: 325-338. |
40 | OROZ J, ROOHI Z A, ABELEZELE S, et al. Implementing the digital thread-A proof-of-concept: AIAA-2023-1405[R]. Reston: AIAA, 2023. |
41 | GRIEVES M. Product lifecycle management: Driving the next generation of lean thinking[M]. New York: McGraw-Hill, 2006. |
42 | ZIMMERMAN P P. Models, simulations, and digital engineering in systems engineering restructure[R]. Springfield: 19th Annual NDIA Systems Engineering Conference, 2016. |
43 | CHEN T G, PENG L J, YANG J J, et al. Modeling, simulation, information technology and processing[R].Washington, D.C.: NASA, 2019. |
44 | 郭齐胜, 李永, 仝炳香, 等. 装备型号需求论证综合量化分析方法研究[J]. 装备指挥技术学院学报, 2009, 20(3): 1-5. |
GUO Q S, LI Y, TONG B X, et al. Study on the synthetical quantitative analysis method of equipment type requirement demonstration[J]. Journal of the Academy of Equipment Command & Technology, 2009, 20(3): 1-5 (in Chinese). | |
45 | ROPER W. There is No Spoon: The new digital acquisition reality[J]. Defense AR Journal, 2021, 28(4): 488. |
46 | 王爱文, 曲慧杨, 周军华, 等. 虚拟采办全寿命周期管理技术研究及应用[J]. 系统仿真学报, 2012, 24(10): 2126-2130. |
WANG A W, QU H Y, ZHOU J H, et al. Research and application on SBA life-cycle management technology[J]. Journal of System Simulation, 2012, 24(10): 2126-2130 (in Chinese). | |
47 | 曹建国. 航空发动机仿真技术研究现状、挑战和展望[J]. 推进技术, 2018, 39(5): 961-970. |
CAO J G. Status, challenges and perspectives of aero-engine simulation technology[J]. Journal of Propulsion Technology, 2018, 39(5): 961-970 (in Chinese). | |
48 | 曹建国. 数字化转型下航空发动机仿真技术发展机遇及应用展望[J]. 系统仿真学报, 2023, 35(1): 1-10. |
CAO J G. Development opportunities and application prospects of aero-engine simulation technology under digital transformation[J]. Journal of System Simulation, 2023, 35(1): 1-10 (in Chinese). | |
49 | SUNDARAM V, BROWNLOW L. MBSE based digital thread and digital system model for AF DCGS: AIAA-2018-1217[R]. Reston: AIAA, 2018. |
50 | EDWARD M K. Approach to the development and application of a digital thread/digital twin authoritative truth source: 10.2514/6.2018-4003[R]. Atlanta: American Institute of Aeronautics and Astronautics, 2018. |
51 | KRAFT E M. The air force digital thread/digital twin-life cycle integration and use of computational and experimental knowledge: AIAA-2016-0897[R]. Reston: AIAA, 2016. |
52 | KINARD D A. F-35 digital thread and advanced manufacturing[C]∥AIAA Aviation Forum, 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018. |
53 | SINGH V, WILLCOX K E. Engineering design with digital thread: AIAA-2018-0569[R]. Reston: AIAA, 2018. |
54 | 刘婷, 张建超. 数字主线应用于航空发动机的初步探讨[J]. 航空动力, 2021(2): 30-34. |
LIU T, ZHANG J C. Preliminary discussion on application of digital thread to aero engine[J]. Aerospace Power, 2021(2): 30-34 (in Chinese). | |
55 | 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18. |
TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18 (in Chinese). | |
56 | 王岭. 基于数字孪生的航空发动机低压涡轮单元体对接技术研究[J]. 计算机测量与控制, 2018, 26(10): 286-290, 303. |
WANG L. Research on the docking technology of final installation for aeroengine low pressure turbine unit based on digital twin[J]. Computer Measurement & Control, 2018, 26(10): 286-290, 303 (in Chinese). | |
57 | 刘魁, 刘婷, 魏杰, 等. 数字孪生在航空发动机可靠性领域的应用探索[J]. 航空动力, 2019(4): 61-64. |
LIU K, LIU T, WEI J, et al. Digital twin and its potential application in the field of aero engine reliability[J]. Aerospace Power, 2019(4): 61-64 (in Chinese). | |
58 | GRIEVES M. Origins of the digital twin concept[R]. Florida: Florida Institute of Technology, 2016. |
59 | Siemens. Apollo13: The first digital twin[EB/OL]. Berlin: Siemens, 2020. [2020-04-14]. . |
60 | 张霖, 陆涵. 从建模仿真看数字孪生[J]. 系统仿真学报, 2021, 33(5): 995-1007. |
ZHANG L, LU H. Discussing digital twin from of modeling and simulation[J]. Journal of System Simulation, 2021, 33(5): 995-1007 (in Chinese). | |
61 | KRITZINGER W, KARNER M, TRAAR G, et al. Digital Twin in manufacturing: a categorical literature review and classification[J]. IFAC-PapersOnLine, 2018, 51(11): 1016-1022. |
62 | 张霖. 关于数字孪生的冷思考及其背后的建模和仿真技术[J]. 系统仿真学报, 2020, 32(4): 1-10. |
ZHANG L. Cold thinking about digital twinning and the modeling and simulation technology behind it[J]. Journal of System Simulation, 2020, 32(4): 1-10 (in Chinese). | |
63 | 肖洪, 史经纬, 王栋欢. 图解航空发动机数字孪生[M]. 西安: 西北工业大学出版社, 2023. |
XIAO H, SHI J W, WANG D H. Graphic digital twin of aero-engine[M]. Xi'an: Northwestern Polytechnical University Press, 2023 (in Chinese). | |
64 | ZHANG X Q, ZHU W H. Application framework of digital twin-driven product smart manufacturing system: a case study of aeroengine blade manufacturing[J]. International Journal of Advanced Robotic Systems, 2019, 16(5): 1-16. |
65 | 王丹, 王大秋. 密级标识技术在网间数据传输中的应用探讨[J]. 科技创新导报, 2020, 17(17): 1-2. |
WANG D, WANG D Q. Discussion on the application of secret identification technology in data transmission between networks[J]. Science and Technology Innovation Herald, 2020, 17(17): 1-2 (in Chinese). | |
66 | LORD E M. Cybersecurity for ybersecurity for acquisition decision authorities and program managers[EB/OL]. [2023-11-07 ].. |
67 | EDWARD M K. Decision analytics in a lifecycle digital engineering environment: AIAA-2019-1364[R]. Reston: AIAA, 2019. |
68 | CUMMINGS R M, MORTON S A. Overview of the DoD HPCMP hypersonic vehicle simulation initiative: AIAA-2018-5205[R]. Reston: AIAA, 2018. |
69 | POST D, ATWOOD C, NEWMEYER K, et al. The computational research and engineering acquisition tools and environments (CREATE) program[J]. Computing in Science & Engineering, 2016, 18(1): 10-13. |
70 | EDWARD M K. HPCMP CREATETM-AV and the air force digital thread: AIAA-2015-0042[R]. Reston: AIAA, 2015. |
/
〈 |
|
〉 |