流体力学与飞行力学

基于空间嵌套径向基函数的高效并行网格变形方法

  • 路宽 ,
  • 宋文萍 ,
  • 郭恒博 ,
  • 叶坤 ,
  • 王跃 ,
  • 韩忠华
展开
  • 1.西北工业大学 航空学院 气动与多学科优化设计研究所,西安 710072
    2.中国航空工业集团沈阳飞机设计研究所,沈阳 110035
    3.飞行器基础布局全国重点实验室,西安 710072
E-mail: wpsong@nwpu.edu.cn

收稿日期: 2023-07-26

  修回日期: 2023-08-21

  录用日期: 2023-10-12

  网络出版日期: 2023-10-13

基金资助

国家自然科学基金(12072285)

An efficient parallel mesh deformation technique based on spatially-nested radial basis functions

  • Kuan LU ,
  • Wenping SONG ,
  • Hengbo GUO ,
  • Kun YE ,
  • Yue WANG ,
  • Zhonghua HAN
Expand
  • 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.AVIC Shenyang Aircraft Design and Research Institute,Shenyang 110035,China
    3.National Key Laboratory of Aircraft Configuration Design,Xi’an 710072,China
E-mail: wpsong@nwpu.edu.cn

Received date: 2023-07-26

  Revised date: 2023-08-21

  Accepted date: 2023-10-12

  Online published: 2023-10-13

Supported by

National Natural Science Foundation of China(12072285)

摘要

高效的网格变形方法可以大幅提高流固耦合数值模拟、基于高精度计算流体动力学(CFD)分析的气动外形优化设计等问题的计算效率。常规的基于径向基函数(RBF)的网格变形方法在变形控制点增多时,会引起网格变形计算量激增,而采用减少变形控制点的方法减小计算量,会带来拟合精度的损失。针对已有RBF网格变形方法计算效率与计算精度不能两全的现状,提出了一种空间嵌套径向基函数模型(SN-RBF),发展了基于SN-RBF模型的高效网格变形方法,在保证网格变形精度的同时大幅度提高了网格变形效率。发展的SN-RBF模型采用多个物理空间相互重叠的子模型代替样本点较多的径向基函数模型,大幅度缩短了径向基函数法网格变形的建模时间。鉴于其便于并行的优良特性,还发展了基于该网格变形方法的并行建模方法与并行网格变形方法,使得网格变形效率得到进一步提升。测试算例表明,建模样本点越多,网格变形效率提升越显著。其中CRM翼身组合体算例,建模效率提升高达16 947倍,网格变形效率提升高达5 218倍。

本文引用格式

路宽 , 宋文萍 , 郭恒博 , 叶坤 , 王跃 , 韩忠华 . 基于空间嵌套径向基函数的高效并行网格变形方法[J]. 航空学报, 2024 , 45(15) : 129433 -129433 . DOI: 10.7527/S1000-6893.2023.29433

Abstract

Efficient mesh deformation methods can significantly improve computational efficiency in fluid structure interaction numerical simulation and aerodynamic shape optimization based on the high-fidelity CFD method. The mesh deformation method based on original Radial Basis Functions (RBF) can result in a significant increase in computational cost when the number of deformation control points increases. The method of reducing RBF modeling calculation time by reducing deformation control points can result in a loss of fitting accuracy. Since the existing deformation methods based on RBF cannot guarantee the computational efficiency and fitting accuracy simultaneously, this paper proposes a Spatially-Nested Radial Basis Function (SN-RBF) model and develops an efficient mesh deformation method based on SN-RBF. The proposed mesh deformation method maintains the accuracy of mesh deformation, while significantly improving the efficiency of mesh deformation. The spatially-nested radial basis function model utilizes multiple spatially overlapping sub models to replace the radial basis function model which has large number of deformation control points, greatly reducing the modeling time of RBF method in mesh deformation. Considering the good parallelism of the proposed method, the strategies for parallel modeling and parallel mesh deformation based on this method have been adopted, further improving the efficiency of mesh deformation. The test cases show that the more modeling sample points, the more significant the improvement in grid deformation efficiency. For the CRM wing-body configuration case, the maximum improvement in modeling efficiency is 16 947 times, and the maximum improvement in mesh deformation efficiency is 5 218 times.

参考文献

1 周铸, 黄江涛, 高正红, 等. 民用飞机气动外形数值优化设计面临的挑战与展望[J]. 航空学报201940(1): 522370.
  ZHOU Z, HUANG J T, GAO Z H, et al. Challenges and prospects of numerical optimization design for large civil aircraft aerodynamic shape[J]. Acta Aeronautica et Astronautica Sinica201940(1): 522370 (in Chinese).
2 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报201435(2): 303-319.
  ZHANG W W, GAO C Q, YE Z Y. Research progress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica201435(2): 303-319 (in Chinese).
3 周璇, 李水乡, 孙树立, 等. 非结构网格变形方法研究进展[J]. 力学进展201141(5): 547-561.
  ZHOU X, LI S X, SUN S L, et al. Advances in the research on unstructured mesh deformation[J]. Advances in Mechanics201141(5): 547-561 (in Chinese).
4 TEZDUYAR T E. Stabilized finite element formulations for incompressible flow computations[J]. Advances in Applied Mechanics199128: 1-44.
5 GAITONDE A, FIDDES S. A moving mesh system for the calculation of unsteady flows[C]∥31st Aerospace Sciences Meeting. Reston: AIAA, 1993: 641.
6 伍贻兆, 田书玲, 夏健. 基于非结构动网格的非定常流数值模拟方法[J]. 航空学报201132(1): 15-26.
  WU Y Z, TIAN S L, XIA J. Unstructured grid methods for unsteady flow simulation[J]. Acta Aeronautica et Astronautica Sinica201132(1): 15-26 (in Chinese).
7 唐静, 邓有奇, 马明生, 等. 飞翼气动优化中参数化和网格变形技术[J]. 航空学报201536(5): 1480-1490.
  TANG J, DENG Y Q, MA M S, et al. Parameterization and grid deformation techniques for flying-wing aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica201536(5): 1480-1490 (in Chinese).
8 孙岩, 孟德虹, 王运涛, 等. 基于径向基函数与混合背景网格的动态网格变形方法[J]. 航空学报201637(5): 1462-1472.
  SUN Y, MENG D H, WANG Y T, et al. Dynamic grid deformation method based on radial basis function and hybrid background grid[J]. Acta Aeronautica et Astronautica Sinica201637(5): 1462-1472 (in Chinese).
9 张科施, 凌圣博, 韩忠华. 跨声速运输机机翼气动/结构优化平台AeroStruct的发展及应用[J]. 航空科学技术202233(4): 47-56.
  ZHANG K S, LING S B, HAN Z H. Development and application of AeroStruct, an aerodynamic/structural optimization platform for transonic transport aircraft wings[J]. Aeronautical Science & Technology202233(4): 47-56 (in Chinese).
10 HUA R H, YE Z Y, WU J. Effect of elastic deformation on flight dynamics of projectiles with large slenderness ratio[J]. Aerospace Science and Technology201771: 347-359.
11 HUA R H, ZHAO C X, YE Z Y, et al. Effect of elastic deformation on the trajectory of aerial separation[J]. Aerospace Science and Technology201545: 128-139.
12 HUA R H, YUAN X X, TANG Z G, et al. Study on flight dynamics of flexible projectiles based on closed-loop feedback control[J]. Aerospace Science and Technology201990: 327-341.
13 曾铮, 王刚, 叶正寅. RBF整体网格变形技术与多体轨迹仿真[J]. 空气动力学学报201533(2): 170-177.
  ZENG Z, WANG G, YE Z Y. Enhanced RBF mesh deformation method and multi-body trajectory simulation[J]. Acta Aerodynamica Sinica201533(2): 170-177 (in Chinese).
14 刘中玉, 张明锋, 聂雪媛, 等. 一种基于径向基函数的两步法网格变形策略[J]. 力学学报201547(3): 534-538.
  LIU Z Y, ZHANG M F, NIE X Y, et al. A two-step mesh deformation strategy based on radial basis function[J]. Chinese Journal of Theoretical and Applied Mechanics201547(3): 534-538 (in Chinese).
15 姚拴宝, 郭迪龙, 杨国伟. 基于径向基函数网格变形的高速列车头型优化[J]. 力学学报201345(6): 982-986.
  YAO S B, GUO D L, YANG G W. Aerodynamic optimization of high-speed train based on rbf mesh deformation[J]. Chinese Journal of Theoretical and Applied Mechanics201345(6): 982-986 (in Chinese).
16 YE K, YE Z Y, FENG Z H, et al. Numerical investigation on the aerothermoelastic deformation of the hypersonic wing[J]. Acta Astronautica2019160: 76-89.
17 BOER A D, VAN DER SCHOOT M S, BIJL H. Mesh deformation based on radial basis function interpolation[J]. Computers and Structures200785(11-14): 784-795.
18 RENDALL T C S, ALLEN C B. Efficient mesh motion using radial basis functions with data reduction algorithms[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 305.
19 RENDALL T C S, ALLEN C B. Reduced surface point selection options for efficient mesh deformation using radial basis functions[J]. Journal of Computational Physics2010229(8): 2810-2820.
20 王刚, 雷博琪, 叶正寅. 一种基于径向基函数的非结构混合网格变形技术[J]. 西北工业大学学报201129(5): 783-788.
  WANG G, LEI B Q, YE Z Y. An efficient deformation technique for hybrid unstructured grid using radial basis functions[J]. Journal of Northwestern Polytechnical University201129(5): 783-788 (in Chinese).
21 WANG G, CHEN X, LIU Z K. Mesh deformation on 3D complex configurations using multistep radial basis functions interpolation[J]. Chinese Journal of Aeronautics201831(4): 660-671.
22 高翔. 非结构CFD并行网格变形算法及其应用[D]. 长沙: 国防科技大学, 2018: 27-31.
  GAO X. Parallel unstructured mesh deformation algorithms and their applications in CFD[D].Changsha: National University of Defense Technology, 2018: 27-31. (in Chinese)
23 魏其, 李春娜, 谷良贤, 等. 一种基于径向基函数和峰值选择法的高效网格变形技术[J]. 航空学报201637(7): 2156-2169.
  WEI Q, LI C N, GU L X, et al. An efficient mesh deformation method based on radial basis functions and peak-selection method[J]. Acta Aeronautica et Astronautica Sinica201637(7): 2156-2169 (in Chinese).
24 FANG H, ZHANG H, SHAN F L, et al. Efficient mesh deformation using radial basis functions with a grouping-circular-based greedy algorithm[J]. Journal of Computational Physics2021433: 110200.
25 MICHLER A K. Aircraft control surface deflection using RBF-based mesh deformation[J]. International Journal for Numerical Methods in Engineering201188(10): 986-1007.
26 谢亮, 徐敏, 安效民, 等. 基于径向基函数的网格变形及非线性气动弹性时域仿真研究[J]. 航空学报201334(7): 1501-1511.
  XIE L, XU M, AN X M, et al. Research of mesh deforming method based on radial basis functions and nonlinear aeroelastic simulation[J]. Acta Aeronautica et Astronautica Sinica201334(7): 1501-1511 (in Chinese).
27 XIE L, KANG Z C, HONG H F, et al. Local mesh deformation using a dual-restricted radial basis functions method[J]. Aerospace Science and Technology2022130: 107940.
28 郭中州, 何志强, 赵文文, 等. 高效非结构网格变形与流场插值方法[J]. 航空学报201839(12): 122411.
  GUO Z Z, HE Z Q, ZHAO W W, et al. Efficient mesh deformation and flowfield interpolation method for unstructured mesh[J]. Acta Aeronautica et Astronautica Sinica201839(12): 122411 (in Chinese).
29 LIU J, FANG H, SHAN F L, et al. An improved peak-selection algorithm using block-based recurrence Cholesky decomposition for mesh deformation[J]. AIP Advances202111(9): 095004.
30 WANG H D, WANG X D, LIU X Y, et al. Improved radial basis functions mesh deformation based on parallel point selection strategy and incremental LDLT decomposition[J]. Aerospace Science and Technology2023141: 108522.
31 RENDALL T, ALLEN C. Parallel efficient mesh motion using radial basis functions with application to multi-bladed rotors[C]∥26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008: 6724.
文章导航

/