临近空间技术

激光能量沉积对超声速进气道流动的控制效果

  • 王旺 ,
  • 饶彩燕 ,
  • 徐聪 ,
  • 李思怡 ,
  • 段毅 ,
  • 张健
展开
  • 中国运载火箭技术研究院 空间物理重点实验室,北京 100076
.E-mail: 510579934@qq.com

收稿日期: 2023-08-09

  修回日期: 2023-08-14

  录用日期: 2023-09-27

  网络出版日期: 2023-10-13

基金资助

国家自然科学基金(U21B6003)

Control effect of laser energy deposition on supersonic inlet flow

  • Wang WANG ,
  • Caiyan RAO ,
  • Cong XU ,
  • Siyi LI ,
  • Yi DUAN ,
  • Jian ZHANG
Expand
  • Science and Technology on Space Physics Laboratory,China Academy of Launch Vehicle Technology,Beijing 100076,China
E-mail: 510579934@qq.com

Received date: 2023-08-09

  Revised date: 2023-08-14

  Accepted date: 2023-09-27

  Online published: 2023-10-13

Supported by

National Natural Science Foundation of China(U21B6003)

摘要

为了寻求有效的流动控制方法来提升进气道捕获流量,基于非定常雷诺平均的Navier-Stokes方程,探究不同激光激励形式(单脉冲激光、连续、高重频激光)对二元式进气道的控制过程及流场参数的影响。在来流马赫数为7的GK-01二元式进气道上游,加入激光能量沉积,对比激励流场与基础流场。结果表明:能量沉积主要通过高温热核和其诱导的压力波这2种方式对进气道内流场结构施加作用,减小进气道内分离区,提升捕获流量,改善进气道内流动状态。具体控制作用过程包括:能量沉积诱导的压力波与斜激波相互作用,能量沉积局部高温高压作用使得进气道入口气流流动方向发生偏折,原流出进气道的部分气流受压力影响流入进气道内,造成进气道捕获流量增加;能量沉积及压力波传播至进气道内流场区域,能量沉积产生的压力波与进气道入口的分离区相互作用,原进气道入口的低能分离区逐渐减小,进气道捕获流量增大。

本文引用格式

王旺 , 饶彩燕 , 徐聪 , 李思怡 , 段毅 , 张健 . 激光能量沉积对超声速进气道流动的控制效果[J]. 航空学报, 2023 , 44(S2) : 729424 -729424 . DOI: 10.7527/S1000-6893.2023.29424

Abstract

To seek an effective flow control method to improve the flow rate captured by the inlet, this paper explores the effect of different laser excitation forms (including single laser pulse, continuous laser pulse, high repetition frequency laser pulse) on the dual inlet based on the unsteady Reynolds-averaged Navier-Stokes equations. The control process and the influence of the flow field parameters are studied. In the upstream of the GK-01 dual inlet with Mach number of 7, laser energy deposition is added, and the excitation flow field and the basic flow field are compared. The results show that the energy deposition acts on the flow field structure in the inlet mainly through the high temperature heat core and its induced pressure waves, reducing the separation area in the inlet, increasing the mass flow, and improving the flow state in the inlet. The specific control process includes two aspects. First, the pressure wave induced by the energy deposition interacts with the oblique shock wave. The local high temperature and high pressure of the energy deposition causes deflection of the inlet airflow, and part of the airflow that originally flows out of the inlet is affected by the pressure and flows into the inlet, thus increasing the mass flow rate of the inlet. Second, the energy deposition and pressure waves propagate to the flow field area in the inlet, and the pressure waves generated by the energy deposition interacts with the separation area of the inlet, leading to the gradual decrease of the low-energy separation zone and the increase of the inlet mass flow.

参考文献

1 张冬青, 陈英硕. 吸气式高超声速飞行器在军事领域的应用[J]. 飞航导弹2007(9): 14-16, 22.
  ZHANG D Q, CHEN Y S. Application of air-breathing hypersonic vehicle in military field[J]. Winged Missiles Journal2007(9): 14-16, 22 (in Chinese).
2 刘大响, 金捷. 21世纪世界航空动力技术发展趋势与展望[J]. 中国工程科学20046(9): 1-8.
  LIU D X, JIN J. The development trends and prospect of world aeropropulsion technology in the 21st century[J]. Engineering Science20046(9): 1-8 (in Chinese).
3 HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Reston: AIAA, 1994.
4 侯早, 王福民, 旷武岳. 冲压发动机超声速进气道研究进展[J]. 火箭推进200834(5): 31-34, 58.
  HOU Z, WANG F M, KUANG W Y. Development of supersonic scramjet inlet[J]. Journal of Rocket Propulsion200834(5): 31-34, 58 (in Chinese).
5 李益文, 王宇天, 庞垒, 等. 进气道等离子体/磁流体流动控制研究进展[J]. 力学学报201951(2): 311-321.
  LI Y W, WANG Y T, PANG L, et al. Research progress of plasma/mhd flow control in inlet[J]. Chinese Journal of Theoretical and Applied Mechanics201951(2): 311-321 (in Chinese).
6 陶淑芬. 纳秒激光脉冲烧蚀金属铜的物理过程分析[J]. 激光杂志201132(4): 36-37.
  TAO S F. The physical processes of the metallic materials in nanosecond laser ablation[J]. Laser Journal201132(4): 36-37 (in Chinese).
7 H?BERLE J, GüLHAN A. Investigation of the performance of a scramjet inlet at Mach 6 with boundary layer bleed[C]∥ Proceedings of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006.
8 王翼. 高超声速进气道启动问题研究[D]. 长沙: 国防科学技术大学, 2008.
  WANG Y. Investigation on the starting characteristics of hypersonic inlet[D]. Changsha: National University of Defense Technology, 2008 (in Chinese).
9 OWENS L, ALLAN B, GORTON S. Boundary-layer-ingesting inlet flow control: AIAA-2006-0839[R]. Reston: AIAA,2006.
10 YAN H, GAITONDE D. Effect of thermally induced perturbation in supersonic boundary layers[J]. Physics of Fluids201022:064101.
11 YAN H, GAITONDE D. Parametric study of pulsed thermal bumps in supersonic boundary layer[J]. Shock Waves201121(5): 411-423.
12 FALEMPIN F, FIRSOV A A, YARANTSEV D A, et al. Plasma control of shock wave configuration in off-design mode of M=2 inlet[J]. Experiments in Fluids201556(3): 54.
13 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
14 王江锋, 伍贻兆. 通风分裂算法在有限元非结构网格中的推广[J]. 中国科学技术大学学报199929(1): 122-126.
  WANG J F, WU Y Z. A new flux splitting scheme on unstructured grids: AUSM+ [J]. Journal of University of Science and Technology of China199929(1): 122-126 (in Chinese).
15 H?BERLE J, GüLHAN A. Investigation of two-dimensional scramjet inlet flowfield at Mach 7[J]. Journal of Propulsion and Power200824(3): 446-459.
16 ZHELTOVODOV A A, PIMONOV E A. Numerical simulation of an energy deposition zone in quiescent air and in a supersonic flow under the conditions of interaction with a normal shock[J]. Technical Physics201358(2): 170-184.
17 刘凡, 严红. 脉冲能量沉积对超声速射流/激波相互作用掺混的控制研究[J]. 推进技术201940(6): 1220-1230.
  LIU F, YAN H. Mixing control of supersonic jet interacting with oblique shock by pulsed energy deposition[J]. Journal of Propulsion Technology201940(6): 1220-1230 (in Chinese).
18 BEN-DOR G. Shock wave reflection phenomena[M]. Berlin, Heidelberg: Springer, 2007.
19 CARROLL B F, DUTTON J C. Characteristics of multiple shock wave/turbulent boundary-layer interactions in rectangular ducts[J]. Journal of Propulsion and Power19906(2): 186-193.
20 洪延姬, 李倩, 王殿恺. 超声速飞行器的激光空气锥减阻方法[M]. 北京: 科学出版社, 2016.
  HONG Y J, LI Q, WANG D K. Laser air cone drag reduction method for supersonic aircraft[M]. Beijing: Science Press, 2016 (in Chinese).
文章导航

/