柔性变形后缘以无缝、光滑的气动外形不仅在气动方面相比传统铰链舵面有显著优势,在提升噪声性能方面也具有较大潜力。在大涡模拟模型和基于Lighthill声比拟方法的FW-H方程基础上,利用CFD数值仿真研究了有缝后缘和无缝后缘的气动噪声特性对比。更进一步,在遭遇阵风时,通过无缝后缘柔性动态变形进行载荷减缓,并与无缝后缘刚性偏转进行载荷减缓效率和气动噪声特性对比。研究表明,在4°迎角下,无缝后缘相比有缝后缘纯音噪声峰值降低20.2dB;在4°-20°等效迎角的正弦阵风下,基于无缝柔性变形后缘的翼型载荷减缓效率均在60%以上,比刚性偏转后缘的载荷减缓效率高出10%-30%;且在12°等效迎角的正弦阵风下,无缝后缘柔性变形纯音噪声峰值相比刚性偏转最高可降低7.2dB。最后从动态特性和流场演化角度分析了无缝后缘两种偏转方式对阵风载荷减缓效率和气动噪声特性的影响机理。
The flexible morphing trailing edge's seamless and smooth aerodynamic shape not only offers significant improvements over traditional hinged rudders in aerodynamic performance but also has the potential to enhance noise reduction capabil-ities. Using large eddy simulation model and acoustic analogy method based on the FW-H equation, the aeroacoustic characteristics of the stitched and seamless trailing edges are investigated through CFD numerical simulation. Further-more, the study explores the aircraft's aeroacoustic characteristics when encounters gusts, with a particular focus on the flexible morphing of the seamless trailing edge. And load alleviation efficiency and aeroacoustic characteristics are com-pared with seamless trailing edge rigid deflection. The results show that at 4° Angle, the tonal noise peak of seamless trail-ing edge decreases by 20.2dB compared with that of slotted trailing edge. What's more, under the sine wind gust of 4°-20° equivalent Angle, the load alleviation efficiency of flexible morphing trailing edge is more than 60%, which is 10%-30% higher than the rigid deflection. In addition, the tonal noise peak value of flexible morphing trailing edge can be re-duced by 7.2dB compared with rigid deflection at 12° equivalent Angle sine gust. Finally, the effects of the two deflection modes of the seamless trailing edge on wind load alleviation efficiency and aeroacoustic characteristics are analyzed from the perspective of dynamic characteristics and flow evolution.
[1] JAWAHAR H K, Ali S A S, AZARPEYVAND M, et al. Aerodynamic and aeroacoustic performance of high-lift airfoil fitted with slat cove fillers[J]. Journal of Sound and Vibration, 2020, 479: 115347.
[2] 乔渭阳, 仝帆, 陈伟杰, 等. 仿生学气动噪声控制研究的历史, 现状和进展[J]. 空气动力学学报, 2018, 36(1): 98-121.
QIAO W Y, GONG F, CHEN W J, et al. The history, present situation and progress of bionic aerodynamic noise control[J]. Journal of Aerodynamics, 2018, 36(1): 98-121.
[3] 朱自强, 兰世隆. 民机机体噪声及其降噪研究[J]. 航空学报, 2015,36(02):406-421.
ZHU Z Q, LAN S L. Research on civil aircraft body noise and noise reduction[J]. Chinese Journal of Aer-onautics,2015,36(02):406-421.
[4] DOBRZYNSKI W. Almost 40 years of airframe noise research: what did we achieve?[J]. Journal of aircraft, 2010, 47(2): 353-367.
[5] RIVERO A E, FOURNIER S, MANOLESOS M, et al. Wind Tunnel Comparison of Flapped and FishBAC Camber Variation for Lift Control[C]//AIAA SciTech 2020Forum.2020:1300.https://doi.org/10.2514/6.2020:1300
[6] VARTIO E, SHAW E, VETTER T. Gust load allevia-tion flight control system design for a sensorcraft ve-hicle[C]//26th AIAA applied aerodynamics confer-ence. 2008: 7192.
[7] WONG A, BIL C, MARINO M. Design and Aerody-namic Performance of a FishBAC Morphing Wing[C]//AIAA SCITECH 2022 Forum. 2022: 1298.
[8] NGUYEN N , LEBOFSKY S , TING E, et al. Devel-opment of Variable Camber Continuous Trailing Edge Flap for Performance Adaptive Aeroelastic Wing[C]// SAE AeroTech Congress & Exhibition. 2015:ARC-E-DAA-TN25273.
[9] NGUYEN N T, CRAMER N B, HASHEMI K E, et al. Progress on Gust Load Alleviation Wind Tunnel Ex-periment and Aeroservoelastic Model Validation for a Flexible Wing with Variable Camber Continuous Trail-ing Edge Flap System[C]//AIAA Scitech 2020 Forum. 2020: 0214. https://doi.org/10.2514/6.2020-0214
[10] BROOKS T F, POPE D S, MARCOLINI M A. Airfoil self-noise and prediction[R]. 1989.
[11] WOLF W R, LELE S K. Trailing-edge noise predic-tions using compressible large-eddy simulation and acoustic analogy[J]. AIAA journal, 2012, 50(11): 2423-2434.
[12] IKEDA T, ATOBE T, TAKAGI S. Direct simulations of trailing-edge noise generation from two-dimensional airfoils at low Reynolds numbers[J]. Journal of Sound and Vibration, 2012, 331(3): 556-574.
[13] JONES L E, SANDBERG R D. Numerical analysis of tonal airfoil self-noise and acoustic feedback-loops[J]. Journal of Sound and Vibration, 2011, 330(25): 6137-6152.
[14] CHONG T P, JOSEPH P F, KINGAN M J. An investi-gation of airfoil tonal noise at different Reynolds numbers and angles of attack[J]. Applied Acoustics, 2013, 74(1): 38-48.
[15] ARCONDOULIS E, Doolan C J, Zander A C, et al. An investigation of airfoil dual acoustic feedback mech-anisms at low-to-moderate Reynolds number[J]. Journal of Sound and Vibration, 2019, 460: 114887.
[16] 游亚飞. 机翼后缘噪声预测研究[D].西北工业大学, 2007.
YOU Y F. Research on noise prediction of wing trail-ing edge[D]. Northwestern Polytechnical University, 2007.
[17] KAN Z, Li D, Zhao S, et al. Aeroacoustic and aero-dynamic characteristics of a morphing airfoil[J]. Air-craft Engineering and Aerospace Technology, 2021, 93(5): 888-899.
[18] WATKINS Joseph; BOUFERROUK Abdessalem. The Effects of a Morphed Trailing-Edge Flap on the Aero-acoustic and Aerodynamic Performance of a 30P30N Aerofoil. In: Acoustics. MDPI, 2022. p. 248-267.
[19] 魏人可,刘宇,李辰昭. 30P30N三段式增升翼型缝翼噪声特征与降噪研究[C]//中国力学学会流体力学专业委员会.第十一届全国流体力学学术会议论文摘要集, 2020:1.DOI:10.26914/c.cnkihy.2020.035626.
WEI R K, LIU Y, LI C Z. Study on noise characteris-tics and noise reduction of 30P30N three-stage in-creased lift airfoil slats[C]//Chinese Society of Me-chanics fluid Mechanics professional committee. Ab-stracts of the 11th National Fluid Mechanics Academ-ic Conference, 2020:1.DOI:10.26914/c.cnkihy.2020.035626.
[20] Jawahar H K, AZARPEYVAND M, da Silva C R I. Acoustic and flow characteristics of an airfoil fitted with morphed trailing edges[J]. Experimental Thermal and Fluid Science, 2021, 123: 110287.
[21] Jawahar H K, VEMURI S H S, AZARPEYVAND M. Aerodynamic noise characteristics of airfoils with morphed trailing edges[J]. International Journal of Heat and Fluid Flow, 2022, 93: 108892.
[22] ABDESSEMED C. Dynamic mesh framework for morphing wings CFD[D]. University of the West of England, 2019.
[23] ABDESSEMED C, BOUFERROUK A, YAO Y. Aero-dynamic and aeroacoustic analysis of a harmonically morphing airfoil using dynamic mesh-ing[C]//Acoustics. Multidisciplinary Digital Publishing Institute, 2021, 3(1): 177-199.
[24] NICOUD F, DUCROS F. Subgrid scale stress model-ling based on the square of the velocity gradient ten-sor[J]. Flow, Turbulence and Combustion,1999, 62(3): 183-200
[25] PIOMELLI U. Large-eddy simulation: achievements and challenges[J]. Progress in Aerospace Sciences, 1999, 35(4): 335-362
[26] FFOWCS Williams J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Phys-ical Sciences, 1969, 264(1151): 321-342
[27] LIGHTHILL M J. On sound generated aerodynami-cally I. General theory[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Phys-ical Sciences, 1952, 211(1107): 564-587.