The last stage of GE E3 low-pressure turbine is taken as the object of study, and the experimentally validated flow/acoustic field hybrid model is used to investigate the bend stator (-30°~30°), the lean stator (-15°~15°), and the partial combination of the bend/lean stator with serval angles on the aerodynamic performance of the turbine and the influence law of wake interaction tonal noise and potential interaction tonal noise, meanwhile, the physical mechanisms are preliminarily analyzed in terms of the flow field and the acoustic field. The results show that: (1) the isolated large-bending and large-leaning stator are favorable to improve the effi-ciency of the turbine stage, and the combination may even result in the efficiency gain of "1+1>2", and the potential interaction tonal noise is more affected by the bend or lean than that of wake interaction tonal noise, and the gain of noise reduction is more obvious; (2) the effect of large-bend or lean stator on the aerodynamic performance of the turbine is more significant. Compared to the isolated bend or lean stator, the combined bend/lean stator can realize both efficiency and noise gains, and the optimal scheme is the bend 20/lean 10 stator, which improves the aerodynamic efficiency by 0.16% and obtains a noise reduction gain of 1.84 dB at the same time; (3) The effect of the bend/lean stator on the efficiency is mainly related to the secondary flow and the blade loss, whereas the effect on the noise is mainly related to the interaction intensity and the phase changes. In conclusion, although the bend/lean stator is not a novel design option, the bend/lean stator has the potential to realize a high-efficiency and low-noise design of the turbine, and its physical mechanism and noise reduction law are still worthy of extensive research, then apply theoretical support for future engi-neering applications.
[1] BJORN V S, ALBERY C B, MCKINLEY R L. U. Navy Flight Deck Hearing Protection Use Trends: Survey Re-sults[C]. In New Directions for Improving Audio Effec-tiveness (pp. 1-1-1-20), Meeting Proceeding RTO-MP-HFM-123, Paper 1. Neyilly-Sur-Seine, France: RTO,2005.
[2] MCKINLEY R L, BJORN V S, HALL J A. Improved Hearing Protection for Aviation Personnel[C]. In New Di-rections for Improving Audio Effectiveness (pp. 1-1-1-20), Meeting Proceeding RTO-MP-HFM-123, Paper 13. Ney-illy-Sur-Seine, France: RTO, 2005.
[3] JOSEPH D. Jet Engine Noise Reduction[R]. Department of NAVY Jet Noise Reduction (JNR) Project, Naval Research Advisory Committee, April 2009.
[4] HUFF D L. NASA Glenn’s Contributions to Aircraft En-gine Noise Research[J]. Journal of Aerospace Engineering, 2013. 26(2): 218-250. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000283.
[5] LORD W K. Aircraft noise source reduction technology[M]. CA: Airport Noise Symposium Palm Spring, 2004.
[6] International Civil Aviation Organization. Annex 16: Envi-ronmental protection volume I: aircraft noise, 5th ed[Z]. 2008.
[7] HE Q X. Development of an income-based hedonic moneti-zation model for the assessment of aviation-related noise impacts[D]. America: Massachusetts Institute of Technolo-gy, 2010: 104-105.
[8] LOUISE B. Aviation: noise pollution[R]. House of com-mon library, 2014 (05): 9-10.
[9] AYODELE A F, JOHNSON T S. The effects of aircraft noise on psychosocial health[J]. Journal of Transport & Health. Volume.22 (101230). 2021: 1-19. https://doi.org/10.1016/j.jth.2021.101230.
[10] WU C W, REDONNET S. Prediction of Aircraft Noise Impact with Application to Hong Kong International Air-port[J]. Aerospace. 2021: 8(9), 264. https://doi.org/10.3390/aerospace8090264.
[11] DOMINIK H, SUSANNE B, DIRK S, TOBIAS R. Air-craft Noise Distribution as a Fairness Dilemma—A Review of Aircraft Noise through the Lens of Social Justice Re-search[J]. International Journal of Environmental Research and Public Health. 2021 (18): 7399. https://doi.org/10.3390/ijerph18147399.
[12] TYLER J, SOFRIN F. Axial Flow Compressor Noise Studies[R]. SAE Technical Paper 620532, 1962. https://doi.org/10.4271/620532.
[13] SANJOSE M, DAROUKH M, MAGNET W, LABORDERIE J DE, MOREAU S, MANN A. Tonal fan noise prediction and validation on the ANCF configura-tion[J]. Noise Control Eng. J, 2015. 63(6): 552–561. https://doi.org/10.3397/1/376349.
[14] QIU X H, DU L, JING X D, SUN X F, ABOM M, BODEN H. Optimality analysis of bulk-reacting liners based on mode-merging design method[J]. Journal of Sound and Vibration, 2020, 485, 115581. http://doi.org/10.1016/j.jsv.2020.115581.
[15] CHEN C, LI X D, HU F Q. On spatially varying acoustic impedance due to high sound intensity decay in a lined duct [J]. Journal of Sound and Vibration, 2020, 483, 115430. http://doi.org/10.1016/j.jsv.2020.115430.
[16] 乔渭阳.航空发动机气动声学设计的理论、模型和方法[J].推进技术,2021,42(1):10-38. https://10.13675/j.cnki.tjjs.200329.
QIAO W Y. Theory, Model and Method of Aero-engine Aeroacoustic Design[J]. Journal of Propulsion and Tech-nology, 2021, 42(1): 10-38 (in Chinese). https://10.13675/j.cnki.tjjs.200329.
[17] ERIC T. Towards a quieter low-pressure turbine: design characteristics and prediction needs[J]. International Jour-nal of Aeroacoustics. 2011, 10(1): 1-16. https://doi.org/10.1260/1475-472X.10.1.1.
[18] MOREAU S. Turbomachinery noise prediction: Present and Future[J]. Acoustics, 2019. 1(1): 92-116. https://doi.org/10.3390/acoustics1010008.
[19] LUO B, CHU W L, DONG W, CHEN X Y. Aerodynamic Characteristics and Noise Analysis of a Low-Speed Axial Fan[C]. ASME Turbo Expo 2018: Turbomachinery Tech-nical Conference and Exposition, GT2018-76079. https://doi.org/10.1115/GT2018-76079.
[20] 张伟光,王晓宇,孙晓峰. 叶片弯扭组合设计对风扇气动噪声的被动控制[J]. 航空学报,2017, 38(02): 167-175.
ZHANG W G, WANG X Y, SUN X F. Passive control of fan noise by vane sweep and lean [J]. ACTA AERONAUTICA SINICA, 2017, 38(2): 167-175 (in Chi-nese).
[21] ZHANG W G, WANG X Y, DU L, SUN X F. Mutual Effect Between Swept-and-Leaned Vanes and Acoustic Liners on Fan Interaction-Noise Reduction [J]. AIAA Journal, 2019. 57(6): 2479-2488. http://doi.org/10.2514/1.J057854.
[22] 蒋永松,郑文涛,赵航,杨明绥,王咏梅. 风扇出口导向叶片低噪声设计Ⅰ:方法与优化[J]. 航空学报,2019. 40(10): 14-24. http://doi.org/10.7527/S1000-6893.2019.22955.
JIANG YONGSONG, ZHENG WENTAO, ZHAO HANG, YANG MINGSUI, WANG YONGMEI. Low noise design of fan outlet guide vane, part Ⅰ: Method and optimization [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(10): 14-24(in Chi-nese).http://doi.org/10.7527/S10006893.2019.22955.
[23] 郑文涛,蒋永松,赵航,潘若痴,赵勇. 风扇出口导向叶片低噪声设计Ⅱ:数值验证[J]. 航空学报,2019, 40(10): 25-37. http://doi.org/10.7527/S1000-6893.2019.22956.
ZHENG WENTAO, JIANG YONGSONG, ZHAO HANG, PAN RUOCHI, ZHAO YONG. Low noise design of fan outlet guide vane, part Ⅱ: Numerical verifications[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(10): 25-37 (in Chinese). http://doi.org/10.7527/S1000-6893.2019.22956.
[24] WANG L F, MAO L Q. XIANG K S, DUAN W H, TONG F, QIAO W Y. Numerical Study on Duct Acoustic Modal and Source Flow Structure of Fan Tones With Leaned and Swept Stator [C]. ASME Turbo Expo 2020: turbomachinery Technical Conference and Exposition, GT2020-14180. https://doi.org/10.1115/GT2020-14180.
[25] HAN JT, ZHANG Y, LI S Y, HUANG B, WU D Z. Sta-tor modification methods for diagonal flow fans to achieve noise reduction of rotor-stator interaction [J]. Journal of Mechanical Science and Technology, 2022. 36(2): 785-796. http://doi.org/10.1007/s12206-022-0126-6.
[26] TRAUB P, GRUNDEL H, GAUTIER S. Numerical in-vestigation for optimizing the aero-acoustical design of modern LP-turbines [C]. The thirteenth International Con-gress on Sound and Vibration. Vienna, Austria: July 2-6, 2006.
[27] BROSZAT D, KENNEPOHL F, TAPKEN U. Validation of an acoustically 3-D disigned turbine exit guide vane [C]. 16th AIAA/CEAS Aeroacoustics Conference. Stockholm, Sweden: June 7 - 9, 2010. AIAA 2010-3806.
[28] 赵磊,乔渭阳,谭洪川. 弯曲/倾斜叶片对大展弦比涡轮气动性能影响[J]. 推进技术,2011. 32(5): 625-630. http://doi,org/10.13675/j.cnki.tjjs.2011.05.008.
ZHAO L, QIAO W Y, TAN H C. Effects of bowed/lean vanes on aerodynamic performance of high aspect ratio tur-bine[J]. Journal of Propulsion Technology, 2011. 32(5): 625-630 (in Chinese).
[29] 赵磊,乔渭阳,谭洪川.低压涡轮的气动-声学三维数值优化:倾斜导叶策略 [J].航空学报,2013,34(02):246-254.
[30] ZHU Y L, LUO J Q, LIU F. Influence of blade lean to-gether with blade clocking on the overall aerodynamic per-formance of a multi-stage turbine [J]. Aerospace Science and Technology, 2018: 329-336. https://doi.org/10.1016/j.ast.2018.07.016.
[31] Kangshen Xiang, Weijie Chen, Jianxin Llian and Weiyang Qiao. Numerical analysis on sound characteristics and bi-onic control of turbine tonal noise [C]. AIAA AVIATION 2022 Forum, AIAA 2022-3673. https://doi.org/10.2514/6.2022-3673.
[32] GOLDSTEIN M E. Aeroacoustics [M]. Mc Graw-Hill: New York, NY, USA, 1976. https://doi.org/10.1017/S0022112077211256.
[33] 乔渭阳. 航空发动机气动声学(第二版)[M]. 西安:西北工业大学出版社,2016.
QIAO W Y. Aero-engine Aeroacoustics [M]. Xi’an: Northwestern Polytropic University, 2016 (in Chinese).