基于高精度算法的结冰翼型分离流动数值模拟
收稿日期: 2023-07-10
修回日期: 2023-07-16
录用日期: 2023-08-09
网络出版日期: 2023-10-08
基金资助
国家重大项目(GJXM92579);广东省基础与应用基础研究基金(2023A1515010036);中山大学中央高校基本科研业务费专项资金(22QNTD0705)
Numerical simulation of separated flow around iced airfoil based on high⁃order schemes
Received date: 2023-07-10
Revised date: 2023-07-16
Accepted date: 2023-08-09
Online published: 2023-10-08
Supported by
National Key Project(GJXM92579);Guangdong Basic and Applied Basic Research Foundation(2023A1515010036);the Fundamental Research Funds for the Central Vniversities, Sun Yat?University(22QNTD0705)
CFD在航空航天领域应用广泛,在飞机结冰研究方面也成效斐然。但对于结冰后流场结构分辨、关键气动特性预测等一系列问题,当前主流的模拟方法仍存在数值格式精度低、流场细节捕捉不足的缺陷。针对此问题,提出将高精度格式和雷诺应力模型结合,应用于结冰翼型分离流动模拟研究,并与低阶精度格式、不同湍流模型进行对比。计算结果表明,使用相同湍流模型,高阶格式比低阶格式所预测的气动特性曲线与实验值更吻合,最大升力系数的相对误差更低;使用相同精度格式离散,雷诺应力模型对流场结构,特别是精细结构的分辨率明显优于SA模型和
农历 , 盛子帅 , 冼军 , 张怀宝 . 基于高精度算法的结冰翼型分离流动数值模拟[J]. 航空学报, 2023 , 44(S2) : 729291 -729291 . DOI: 10.7527/S1000-6893.2023.29291
Computational Fluid Dynamics (CFD) is now widely used in aeronautics and astronautics as a crucial method of aircraft icing research. There exists deficiency in simulation accuracy and details capturing in the field of flow field structure or flow mechanism after icing and the change of aerodynamic characteristics. In this paper, numerical simulations of separated flow around three iced airfoils are conducted by using the SSG/LRR-g turbulence model equipped with the high-order discretization method WCNS, and compare with lower order accuracy schemes and different turbulence models. It is found that using the same turbulence model, the drag and pitching moment coefficient predicted by the WCNS are in better agreement with the experimental data than those predicted by the lower order scheme, and the error of the maximum lift coefficient predicted reduced. In addition, using the same accuracy scheme, pressure coefficient distribution at the surface, and the re-attached point of the separation bubble obtained by the current work are comparable to those of the experiment.
1 | BRAGG M B, BROEREN A P, BLUMENTHAL L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362. |
2 | STEBBINS S J, LOTH E, BROEREN A P, et al. Review of computational methods for aerodynamic analysis of iced lifting surfaces[J]. Progress in Aerospace Sciences, 2019, 111: 100583. |
3 | SAAD T. Turbulence modeling for beginners[EB/OL]. (2017-06-24)[2023-04-12]. . |
4 | SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥ Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
5 | WILCOX D C. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal, 1988, 26(11): 1299-1310. |
6 | JONES W P, LAUNDER B E. The prediction of laminarization with a two-equation model of turbulence[J]. International Journal of Heat and Mass Transfer, 1972, 15(2): 301-314. |
7 | 郎需巍, 刘星. 数值模拟积冰翼型及气动特性分析[J]. 航空计算技术, 2015, 45(5): 82-85. |
LANG X W, LIU X. Numerical simulation of icing airfoil and analysis of aerodynamic characteristics[J]. Aeronautical Computing Technique, 2015, 45(5): 82-85 (in Chinese). | |
8 | 赵宾宾, 黎先平, 李杰, 等. 前缘角冰几何参数对翼型失速特性的影响分析研究[J]. 西北工业大学学报, 2023, 41(1): 39-46. |
ZHAO B B, LI X P, LI J, et al. Influence of geometric parameters of leading edge horn-ice on stall characteristics of airfoil[J]. Journal of Northwestern Polytechnical University, 2023, 41(1): 39-46 (in Chinese). | |
9 | 陈科, 曹义华, 安克文, 等. 应用混合网格分析复杂积冰翼型气动性能[J]. 航空学报, 2007, 28(): 87-91. |
CHEN K, CAO Y H, AN K W, et al. Application of hybrid grid to analyzing complex iced airfoil aerodynamic performance[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(Sup 1): 87-91 (in Chinese). | |
10 | 张恒, 李杰, 龚志斌. 多段翼型缝翼前缘结冰大迎角分离流动数值模拟[J]. 航空学报, 2017, 38(2): 520746. |
ZHANG H, LI J, GONG Z B. Numerical simulation of separated flow around a multi-element airfoil at high angle of attack with iced slat[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520746 (in Chinese). | |
11 | LI H R, ZHANG Y F, CHEN H X. Numerical simulation of iced wing using separating shear layer fixed turbulence models[J]. AIAA Journal, 2021, 59(9): 3667-3681. |
12 | LI H R, ZHANG Y F, CHEN H X. Aerodynamic prediction of iced airfoils based on modified three-equation turbulence model[J]. AIAA Journal, 2020, 58(9): 3863-3876. |
13 | CHOU P Y. On velocity correlations and the solutions of the equations of turbulent fluctuation[J]. Quarterly of Applied Mathematics, 1945, 3(1): 38-54. |
14 | CéCORA R D, EISFELD B, PROBST A, et al. Differential Reynolds stress modeling for aeronautics: AIAA-2012-0563[R]. Reston: AIAA, 2012. |
15 | TOGITI V K, EISFELD B. Assessment of g-equation formulation for a second-moment Reynolds stress turbulence model (invited)[C]∥ Proceedings of the 22nd AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2015. |
16 | EISFELD B, RUMSEY C, TOGITI V. Verification and validation of a second-moment-closure model[J]. AIAA Journal, 2016, 54(5): 1524-1541. |
17 | DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22-44. |
18 | DENG X G, MAO M L, TU G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230(4): 1100-1115. |
19 | WANG S, DENG X G, WANG G X, et al. Blending the eddy-viscosity and Reynolds-stress models using uniform high-order discretization[J]. AIAA Journal, 2020, 58(12): 5361-5378. |
20 | RUMSEY C. Turbulence modeling resource[EB/OL]. (2022-03-01) [2023-04-12]. . |
21 | GURBACKI H M. Ice-induced unsteady flowfield effects on airfoil performance[D]. Washington, D.C.: NASA, 2003. |
22 | ADDY H, BROEREN A, ZOECKLER J, et al. A wind tunnel study of icing effects on a business jet airfoil[C]∥ Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. |
23 | Computational Aerodynamics Institute of China Aerodynamics Research and Development Center. Verification and validation calibration model database. 1.0[R]. National Space Science Data Center. 2022. |
/
〈 |
|
〉 |