冰层中相控阵超声波束传播特性的数值模拟
收稿日期: 2023-07-10
修回日期: 2023-07-16
录用日期: 2023-07-17
网络出版日期: 2023-10-08
基金资助
国家重大科技专项(J2019-Ⅲ-0010-0054);国家自然科学基金重点项目(12132019)
Numerical simulation of phased array ultrasonic beam propagation characteristics in ice layer
Received date: 2023-07-10
Revised date: 2023-07-16
Accepted date: 2023-07-17
Online published: 2023-10-08
Supported by
National Science and Technology Major Project (J2019-Ⅲ-0010-0054);National Natural Science Foundation of China (Key Program)(12132019)
为解决现有结冰探测技术监测范围小、探测灵敏度低和冰厚探测受限等问题,开展了基于相控阵的超声结冰探测机理研究。以COMSOL为数值计算平台,在相控阵超声波束合成原理基础上,构建了相控阵超声波束覆冰铝板传播模型,研究了相控阵超声波束在三维冰层中的传播规律。与其他结冰探测技术比较,相控阵超声结冰探测范围更宽;与同相激励比较,相控阵激励产生的超声波束能量更集中;S0模态波束位移峰值随冰厚、冰宽、冰长的变化更加显著,S0模态波束位移峰值变化率随激励频率递增,可应用于提高结冰探测灵敏度;超过一定激励频率时S0模态波束位移峰值出现拐点,可能导致冰厚提前饱和;选用合适的激励频率,可同时提高结冰探测灵敏度和冰厚探测的上限。初步探明了相控阵超声波束在冰层中的传播特性,为后续开展超声结冰探测的工程化应用提供了理论参考。
张鸿健 , 张晏鑫 , 熊建军 , 赵照 , 冉林 , 易贤 . 冰层中相控阵超声波束传播特性的数值模拟[J]. 航空学报, 2023 , 44(S2) : 729289 -729289 . DOI: 10.7527/S1000-6893.2023.29289
To solve the problems of small monitoring range, low detection sensitivity and limited detection of ice thickness, the mechanism of ultrasonic icing detection based on phased array is studied. Based on the synthesis principle of phased array ultrasonic beam, using COMSOL as a numerical calculation platform, a propagation model of phased array ultrasonic beam on aluminum plate covered with ice is constructed, and the propagation law of phased array ultrasonic beam in three-dimensional ice layer is studied. Compared with the other icing detection technologies, phased array ultrasonic icing detection offers a wider detection range. Compared with in-phase excitation, the energy of ultrasonic beam generated by phased array excitation is more concentrated. The displacement peak of the S0 mode beam changes more significantly with ice thickness, ice width, and ice length. The displacement peak change rate of the S0 mode beam increases with the excitation frequency, which can enhance the sensitivity of ice detection. When the excitation frequency exceeds a certain level, the peak displacement of the S0 mode beam exhibits a turning point, which may lead to early saturation of ice thickness. Choosing an appropriate excitation frequency can simultaneously improve the sensitivity of icing detection and the upper limit of ice thickness detection. The propagation characteristics of phased array ultrasonic beam in ice layer are preliminarily verified, which provides theoretical reference for future engineering application of ultrasonic icing detection.
Key words: ice detection; ultrasonic beam; phased array; numerical simulation; S0 mode
1 | 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2007: 13-16. |
YI X. Study on similarity criterion between numerical calculation and icing test of aircraft icing[D]. Mianyang: China Aerodynamics Research and Development Center, 2007: 13-16. (in Chinese). | |
2 | 王国柱, 葛俊锋, 桂康, 等. 谐振式结冰状态传感器的分析与建模[J]. 国外电子测量技术, 2018, 37(7): 117-121. |
WANG G Z, GE J F, GUI K, et al. Analysis and modeling of resonant icing status sensor[J]. Foreign Electronic Measurement Technology, 2018, 37(7): 117-121 (in Chinese). | |
3 | 郑燕, 郑英, 张杰, 等. 压电谐振式结冰传感器的结冰试验和数据处理[J]. 计量与测试技术, 2011, 38(2): 1-3. |
ZHENG Y, ZHENG Y, ZHANG J, et al. Piezoelectric resonant icing sensors ice experiments and date processing[J]. Metrology & Measurement Technique, 2011, 38(2): 1-3 (in Chinese). | |
4 | MAIO L, MOLL J, MEMMOLO V, et al. Ultrasonic inspection for ice accretion assessment: Effects on direct wave propagation in composite media[J]. Mechanical Systems and Signal Processing, 2022, 173: 109025. |
5 | 于全朋, 周世圆, 徐春广, 等. 飞机关键部件结冰的超声导波探测[J]. 无损检测, 2021, 43(8): 67-71. |
YU Q P, ZHOU S Y, XU C G, et al. Ultrasonic guided wave detection of aircraft key components icing[J]. Nondestructive Testing, 2021, 43(8): 67-71 (in Chinese). | |
6 | 赵伟伟, 朱春玲, 陶明杰, 等. 超声导波技术用于飞机结冰探测的实验研究[J]. 压电与声光, 2018, 40(2): 269-275. |
ZHAO W W, ZHU C L, TAO M J, et al. Experimental study on ultrasonic guided wave technology for aircraft icing detection[J]. Piezoelectrics & Acoustooptics, 2018, 40(2): 269-275 (in Chinese). | |
7 | WANG Y, WANG Y, LI W, et al. Study on freezing characteristics of the surface water film over glaze ice by using an ultrasonic pulse-echo technique[J]. Ultrasonics, 2022, 126: 106804. |
8 | LIU Y, BOND L J, HU H. Ultrasonic-attenuation-based technique for ice characterization pertinent to aircraft icing phenomena[J]. AIAA Journal, 2017, 55(5): 1602-1609. |
9 | LIU Y, BOND L J, HU H. Ultrasonic-attenuation-based technique for ice characterization pertinent to aircraft icing phenomena[J]. AIAA Journal, 2017, 55(5): 1602-1609. |
10 | 赵伟伟. 基于压电材料的飞机结冰探测系统[D]. 南京: 南京航空航天大学, 2018: 24-41. |
ZHAO W W. Aircraft icing detection system based on piezoelectric materials[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 24-41 (in Chinese). | |
11 | LIU Y, CHEN W L, BOND L J, et al. A feasibility study to identify ice types by measuring attenuation of ultrasonic waves for aircraft icing detection [C]∥ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2014, Collocated with the ASME 2014 12th International Conference on Nanochannels.New York: ASME, 2014. |
12 | 刘琦. 基于超声导波的波导结构频散分析与覆冰响应[D]. 哈尔滨: 哈尔滨工程大学, 2017: 47-64. |
LIU Q. Dispersion analysis and icing response of waveguide structure based on ultrasonic guided waves[D].Harbin: Harbin Engineering University, 2017: 47-64 (in Chinese). | |
13 | 吴荣兴, 李建中, 于兰珍, 等. 兰姆波飞机结冰传感器的最佳工作模态研究[J]. 工业安全与环保, 2016, 42(7): 8-10, 14. |
WU R X, LI J Z, YU L Z, et al. Analysis of optimal functioning modes of lamb wave aircraft ice sensor[J]. Industrial Safety and Environmental Protection, 2016, 42(7): 8-10, 14 (in Chinese). | |
14 | 朱程香, 张玉雷, 朱春玲, 等. 风力机超声导波结冰探测方法的数值和试验研究[J]. 中国科学: 物理学 力学 天文学, 2016, 46(12): 63-70. |
ZHU C X, ZHANG Y L, ZHU C L, et al. Numerical and experimental study on icing detection of wind turbine blade based on ultrasonic guided wave[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2016, 46(12): 63-70 (in Chinese). | |
15 | ZHAO X, ROSE J L. Ultrasonic guided wave tomography for ice detection[J]. Ultrasonics, 2016, 67: 212-219. |
16 | 张鸿健, 张晏鑫, 熊建军, 等. 冰层中Lamb波传播特性的数值模拟和实验研究[J]. 实验流体力学, 2023, 37(2): 68-77. |
ZHANG H J, ZHANG Y X, XIONG J J, et al. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 68-77 (in Chinese). | |
17 | 李培江. 基于Lamb超声导波的结构缺陷成像研究[D]. 上海: 上海大学, 2017: 88-109. |
LI P J. Research on structural defect imaging based on lamb ultrasonic guided waves[D].Shanghai: Shanghai University, 2017: 88-109 (in Chinese). | |
18 | 樊程广, 余孙全, 高斌, 等. 基于超分辨率超声图像的缺陷量化方法[J]. 国防科技大学学报, 2022, 44(5): 187-192. |
FAN C G, YU S Q, GAO B, et al. Defect quantification method based on super-resolution ultrasonic image[J]. Journal of National University of Defense Technology, 2022, 44(5): 187-192 (in Chinese). | |
19 | 余海军, 王孝卿, 王良涛, 等. 管道的相控阵超声高频导波检测[J]. 无损检测, 2020, 42(10): 32-39. |
YU H J, WANG X Q, WANG L T, et al. Detection of pipeline by phased array ultrasonic high frequency guided waves[J]. Nondestructive Testing, 2020, 42(10): 32-39 (in Chinese). | |
20 | DUPONT-MARILLIA F, JAHAZI M, LAFRENIERE S, et al. Design and optimisation of a phased array transducer for ultrasonic inspection of large forged steel ingots[J]. NDT & E International, 2019, 103: 119-129. |
21 | TAHERI H, HASSEN A A. Nondestructive ultrasonic inspection of composite materials: A comparative advantage of phased array ultrasonic[J]. Applied Sciences, 2019, 9(8): 1628. |
22 | 章东, 桂杰, 周哲海. 超声相控阵全聚焦无损检测技术概述[J]. 声学技术, 2018, 37(4): 320-325. |
ZHANG D, GUI J, ZHOU Z H. A review of total focusing method for ultrasonic phased array imaging[J]. Technical Acoustics, 2018, 37(4): 320-325 (in Chinese). | |
23 | WANG L J, LI S A. Acoustic field calculation of ultrasonic phased array concave cylindrical transducer[J]. Applied Mechanics and Materials, 2014, 716-717: 1111-1113. |
24 | REN Y Q, QIU L, YUAN S F, et al. Multi-damage imaging of composite structures under environmental and operational conditions using guided wave and Gaussian mixture model[J]. Smart Materials and Structures, 2019, 28(11): 115017. |
25 | LIN S B, SHAMS S, CHOI H, et al. Ultrasonic imaging of multi-layer concrete structures[J]. NDT & E International, 2018, 98: 101-109. |
26 | 金浩然. 圆柱类部件在线相控阵超声成像理论与技术的研究[D]. 杭州: 浙江大学, 2017: 34-45. |
JIN H R. Research on the theory and technology of on-line phased array ultrasonic imaging for cylindrical parts[D].Hangzhou: Zhejiang University, 2017: 34-45 (in Chinese). | |
27 | 郑祥明, 赵玉珍, 史耀武. 兰姆波频散曲线的计算[J]. 无损检测, 2003, 25(2): 66-68. |
ZHENG X M, ZHAO Y Z, SHI Y W. Calculation of lamb wave dispersion curve[J]. Nondestructive Testing, 2003, 25(2): 66-68 (in Chinese). | |
28 | 梁颖. 用于结构健康监测的声发射传感器研究[D]. 太原: 中北大学, 2022: 34-45. |
LIANG Y. Research on acoustic emission sensor for structural health monitoring[D].Taiyuan: North University of China, 2022: 34-45 (in Chinese). |
/
〈 |
|
〉 |