节流式燃/氧分离发动机准一维内弹道数值研究
收稿日期: 2023-06-02
修回日期: 2023-06-26
录用日期: 2023-09-27
网络出版日期: 2023-10-08
基金资助
国家自然科学基金(12002102);黑龙江省自然科学基金(LH2021E089)
Numerical study on quasi⁃one⁃dimensional internal ballistics of throttling segregated fuel⁃oxidizer systems
Received date: 2023-06-02
Revised date: 2023-06-26
Accepted date: 2023-09-27
Online published: 2023-10-08
Supported by
National Natural Science Foundation of China(12002102);Natural Science Foundation of Heilongjiang Province(LH2021E089)
针对节流式燃/氧分离发动机建立非定常准一维内弹道数值模型和性能调控机理关系式,以对发动机推力调控过程进行预示。数值模型考虑燃烧室中的燃气注入、壁面摩擦和推进剂燃面退移,采用有限速率化学反应模型描述化学非平衡过程。利用该数值模型,计算得到了节流式燃/氧分离发动机的调控性能参数及内部流动参数分布情况。结果显示,当流量调节阀喉部半径由2.89 mm调节至1.65 mm时,发动机推力可由105.09 N增至432.18 N,推力提升至调节前推力的411.25%,验证了节流式燃/氧分离发动机的推力调控能力。发动机在流量调节阀作动过程中出现负调现象,调节阀作动速度越大,负调量越大,但性能参数的响应时间越短。发动机性能调控影响因素分析表明:推进剂压力指数增大和喷管喉部半径减小均有助于节流式燃/氧分离发动机性能调控能力的提升,从而提出了喷管可调的节流式燃/氧分离发动机方案。其工作过程的仿真结果表明:在特定的推力调节比要求下,减小喷管喉部半径能够有效降低富燃燃烧室承压水平,为发动机性能调控提供更多可行方案。
王革 , 王志邦 , 王富祺 , 关奔 , 王立民 , 宁浩然 . 节流式燃/氧分离发动机准一维内弹道数值研究[J]. 航空学报, 2024 , 45(7) : 129111 -129111 . DOI: 10.7527/S1000-6893.2023.29111
A predictive unsteady quasi-one-dimensional internal ballistic numerical model and a set of performance regulation mechanism formulas are established for throttling segregated fuel-oxidizer systems. The numerical model considers combustion gas injection, wall friction, and propellant surface regression, using a finite-rate chemical reaction model to describe the non-equilibrium process. With this model, performance parameters and internal flow parameter distributions of the throttling segregated fuel-oxidizer system can be well demonstrated.Results show that, adjustment of the throat radius of the throttle valve from 2.89 mm to 1.65 mm increases the thrust of the system from 105.09 N to 432.18 N, by 411.25% from the original thrust, verifying the regulation capability of the throttling segregated fuel-oxidizer system. During the dynamic operation of the throttle valve, the system experiences anti-regulations. Faster actuation of the valve leads to larger anti-regulation amplitude and shorter response period of the performance parameters. Analysis of the influencing factors of performance regulation reveals that the increase of propellant pressure index and the decrease of nozzle throat radius both contribute to the improvement in performance regulation ability of the throttling segregated fuel-oxidizer system. Accordingly, a new arrangement of throttling segregated fuel-oxidizer system with an adjustable nozzle is proposed. Simulation of this arrangement suggests that, for a specified thrust adjustment ratio, reducing the nozzle throat radius can effectively alleviate the pressure level of the fuel-rich combustion chamber of the system, thus providing more feasible performance regulation schemes for the system operation.
1 | TAPPAN B C, RISHA G A. Solid chemical rocket propulsion system: US13828371[P]. 2014-04-24. |
2 | TAPPAN B C, DALLMANN N A, NOVAK A M, et al. High deltaV solid propulsion system for small Satellites[C]∥30th Annual AIAA/USU Conference on Small Satellites. Reston: AIAA, 2016. |
3 | LICHTHARDT J P. Stabilization of LANL’s novel segregated solid propellant rocket motor[D]. Socorro: New Mexico Institute of Mining and Technology, 2017: 14-21. |
4 | ZOU X R, WANG N F, HAN L, et al. Numerical investigation on regression rate and thrust regulation behaviors of a combined solid rocket motor with aluminum-based fuel[J]. Aerospace Science and Technology, 2021, 119: 107102. |
5 | OSIPOV V, LUCHINSKY D, SMELYANSKIY V, et al. IVHM system for a case breach fault in large segmented SRMs[C]∥ Proceedings of the AIAA Infotech@Aerospace Conference. Reston: AIAA, 2009. |
6 | CAVALLINI E, FAVINI B, DI GIACINTO M, et al. SRM internal ballistic numerical simulation by SPINBALL model[C]∥ Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2009. |
7 | CAVALLINI E, FAVINI B, DI GIACINTO M, et al. Internal ballistics simulation of a NAWC tactical SRM[J]. Journal of Applied Mechanics, 2011, 78(5): 051018. |
8 | GREATRIX D R. Scale effects on quasi-steady solid rocket internal ballistic behaviour[J]. Energies, 2010, 3(11): 1790-1804. |
9 | STEKHAREH S G M, MOSTOFIZADEH A, FOULADI N, et al. One dimensional internal ballistics simulation of solid rocket motor[J]. Iranian Journal of Mechanical Engineering Transactions of the ISME, 2013, 14(1): 5-16. |
10 | VIGANò D, ANNOVAZZI A, MAGGI F. Monte Carlo uncertainty quantification using quasi-1D SRM ballistic model[J]. International Journal of Aerospace Engineering, 2016, 2016: 3765796. |
11 | PONTI F, SOUHAIR N, MINI S, et al. 0D Unsteady -1D Quasi-Stationary Internal Ballistic coupling for ROBOOST simulation tool[C]∥ Proceedings of the AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019. |
12 | SUN L, MA Y J, BAO F T, et al. Extended application and experimental verification of a new erosive burning model coupled heat transfer between gas and grain based on a star-grain solid rocket motor[J]. Energies, 2022, 15(4): 1564. |
13 | KOOKER D, ZINN B. Triggering axial instabilities in solid rockets — Numerical predictions[C]∥ Proceedings of the 9th Propulsion Conference. Reston: AIAA, 1973. |
14 | LEVINE J N, BAUM J D. A numerical study of nonlinear instability phenomena in solid rocket motors[J]. AIAA Journal, 1983, 21(4): 557-564. |
15 | KARTHIKEYAN G, SHIMADA T. Quasi 1-D numerical analysis of combustion instability in hybrid rocket motor incorporating boundary layer lags[C]∥ Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2016. |
16 | UDDANTI N S, CRISPIN Y. CFD modeling of a hybrid rocket using a generalized one-dimensional model of the flame temperature[C]∥ Proceedings of the AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019. |
17 | HEISER W H, PRATT D T, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Reston: AIAA, 1994. |
18 | BUSSING T, MURMAN E. A one-dimensional unsteady model of dual mode scramjet operation[C]∥ Proceedings of the 21st Aerospace Sciences Meeting. Reston: AIAA, 1983. |
19 | STARKEY R P, LEWIS M J. Sensitivity of hydrocarbon combustion modeling for hypersonic missile design[J]. Journal of Propulsion and Power, 2003, 19(1): 89-97. |
20 | TORREZ S, SCHOLTEN N, MICKA D, et al. A scramjet engine model including effects of precombustion shocks and dissociation[C]∥ Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2008. |
21 | TORREZ S M, DRISCOLL J F, IHME M, et al. Reduced-order modeling of turbulent reacting flows with application to ramjets and scramjets[J]. Journal of Propulsion and Power, 2011, 27(2): 371-382. |
22 | BIRZER C H, DOOLAN C J. Quasi-one-dimensional model of hydrogen-fueled scramjet combustors[J]. Journal of Propulsion and Power, 2009, 25(6): 1220-1225. |
23 | ZHANG D, TANG S, CAO L, et al. Research on control-oriented coupling modeling for air-breathing hypersonic propulsion systems[J]. Aerospace Science and Technology, 2019, 84: 143-157. |
24 | 刘敬华, 凌文辉, 刘兴洲, 等. 超音速燃烧室性能非定常准一维流数值模拟[J]. 推进技术, 1998, 19(1): 1-6. |
LIU J H, LING W H, LIU X Z, et al. A quasi one dimensional unsteady numerical analysis of supersonic combustor performance[J]. Journal of Propulsion Technology, 1998, 19(1): 1-6 (in Chinese). | |
25 | 王兰, 邢建文, 郑忠华, 等. 超燃冲压发动机内流性能的一维评估[J]. 推进技术, 2008, 29(6): 641-645. |
WANG L, XING J W, ZHENG Z H, et al. One-dimensional evaluation of the scramjet flowpath performance[J]. Journal of Propulsion Technology, 2008, 29(6): 641-645 (in Chinese). | |
26 | 牛东圣, 侯凌云, 潘鹏飞. 不同燃料超声速燃烧室准一维计算模型[J]. 清华大学学报(自然科学版), 2013, 53(4): 567-572. |
NIU D S, HOU L Y, PAN P F. Quasi-one-dimensional model of supersonic a combustor with various fuels[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(4): 567-572 (in Chinese). | |
27 | 尤厚丰, 张兵, 李德宝. 超燃冲压发动机燃烧室的准一维计算与分析[J]. 推进技术, 2020, 41(3): 623-631. |
YOU H F, ZHANG B, LI D B. Quasi-one-dimensional prediction and analysis of scramjet combustor[J]. Journal of Propulsion Technology, 2020, 41(3): 623-631 (in Chinese). | |
28 | O’BRIEN T F, STARKEY R P, LEWIS M J. Quasi-one-dimensional high-speed engine model with finite-rate chemistry[J]. Journal of Propulsion and Power, 2001, 17(6): 1366-1374. |
29 | SERUSHKIN V V, SINDITSKII V P, EGORSHEV V Y, et al. Combustion mechanism of triaminoguanidine nitrate[J]. Propellants, Explosives, Pyrotechnics, 2013, 38(3): 345-350. |
30 | ADAMS G K, NEWMAN B H, ROBINS A B. The combustion of propellants based upon ammonium perchlorate[J]. Symposium (International) on Combustion, 1961, 8(1): 693-705. |
31 | SMITH T, SCHETZ J, BUI T. Development and ground testing of direct measuring skin friction gages for high enthalpy supersonic flight tests[C]∥ Proceedings of the 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2002. |
32 | LIOU M S. A sequel to AUSM, Part II: AUSM+-up for all speeds[J]. Journal of Computational Physics, 2006, 214(1): 137-170. |
33 | VAN LEER B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method[J]. Journal of Computational Physics, 1979, 32(1): 101-136. |
34 | ABGRALL R, KARNI S. Computations of compressible multifluids[J]. Journal of Computational Physics, 2001, 169(2): 594-623. |
35 | MACCORMACK R, BALDWIN B. A numerical method for solving the Navier-Stokes equations with application to shock-boundary layer interactions[C]∥ Proceedings of the 13th Aerospace Sciences Meeting. Reston: AIAA, 1975. |
36 | GOTTLIEB S, SHU C W. Total variation diminishing Runge-Kutta schemes[J]. Mathematics of Computation, 1998, 67(221): 73-85. |
37 | VERWER J G, SOMMEIJER B P, HUNDSDORFER W. RKC time-stepping for advection-diffusion-reaction problems[J]. Journal of Computational Physics, 2004, 201(1): 61-79. |
38 | 王英男. 燃/氧分离组合固体发动机工作过程及性能预示[D]. 哈尔滨: 哈尔滨工程大学, 2021. |
WANG Y N. The working process and performance prediction of segregated fuel-oxidizer solid motor[D].Harbin: Harbin Engineering University, 2021 (in Chinese). | |
39 | AIKEN R C. Stiff computation[M]. New York: Oxford University Press, 1985. |
40 | LIU S Y, CHEN Z C, WANG L M, et al. Numerical study on transient regression rate and combustion characteristics of segregated AP-based oxidizer/TAGN-based fuel[J]. Fuel, 2023, 337: 126893. |
41 | BILLIG F S, GRENLESKI S E. Heat transfer in supersonic combustion processes[C]∥ Proceeding of International Heat Transfer Conference 4. Danbury: Begellhouse Inc., 1970: 1-11. |
42 | 邓恒, 李志浩, 张时空, 等. 基于零维内弹道模型的变推力发动机喉栓型面设计与工作特性研究[J]. 推进技术, 2022, 43(11): 39-48. |
DENG H, LI Z H, ZHANG S K, et al. Pintle profile design method based on zero-dimensional interior ballistic model and performance for variable thrust motor[J]. Journal of Propulsion Technology, 2022, 43(11): 39-48 (in Chinese). | |
43 | 成沉. 喉栓式固体变推力发动机推力调控方法及性能仿真研究[D]. 西安: 西北工业大学, 2017. |
CHENG C. Thrust control method and performance simulation of pintle controlled solid rocket motor[D].Xi’an: Northwestern Polytechnical University, 2017 (in Chinese). |
/
〈 |
|
〉 |