高速直升机关键技术与发展

  • 邓景辉
展开
  • 中国直升机设计研究所

收稿日期: 2023-05-31

  修回日期: 2023-09-28

  网络出版日期: 2023-10-08

Key Technologies and Development for High-Speed Helicopters

  • DENG Jing-Hui
Expand

Received date: 2023-05-31

  Revised date: 2023-09-28

  Online published: 2023-10-08

摘要

常规直升机由于构型影响,限制了其飞行速度、航程等主要性能指标,高速化已经成为未来直升机发展的重要趋势之一,欧美等国家已争先投入大量的资源研发高速直升机,且取得了阶段性的突破。本文首先分析了限制常规直升机速度的本质因素以及可实现速度提升的不同构型型式;然后重点针对四种具有较大发展潜力的高速构型:共轴刚性旋翼高速直升机、倾转旋翼飞行器、双推力复合式高速直升机、多桨倾转旋翼电驱动高速直升机进行分析,系统梳理了不同类别高速直升机研制过程中因构型差异衍生出的特有关键技术,并对各项关键技术展开技术途径分析,指出其中的难点与发展方向。最后,给出了一些高速直升机的发展思路。

本文引用格式

邓景辉 . 高速直升机关键技术与发展[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/1000-6893.2023.29085

Abstract

The performance criteria, such as flight speed and voyage, are restricted due to the configuration of conventional helicopter. High speed is one of the important trends in the development of helicopter. Euramerican Countries have already invested massive resources in developing high-speed helicopter and obtained phased breakthroughs. In this paper, the essential reasons for the restriction of conventional helicopter flight speed and some different configurations which can improve flight speed are analyzed firstly. Then, detailed analysis is made focus on the four high-speed configurations of great potential, i.e. coaxial-rigid-rotor high-speed helicopter, tilt rotor aircraft, dual thrust compound helicopter and multi propeller tilt rotor aircraft. The special key technologies during development of different high-speed helicopter, due to the differences in configuration, are analyzed systematically. Also, the technical approaches of these different key technologies are investigated. The difficulties and development direction among them are pointed out as well. Finally, some development strategies of the high-speed helicopter are presented.

参考文献

[1] 邓景辉.直升机技术发展与展望[J].航空科学技术,2021,32(1):10-16.
DENG J H.Development and prospect of helicopter technology[J].Aeronautical Science and Technolo-gy,2021,32(1):10-16(in Chinese).
[2] BENTLEY C E,SISSON M L. Joint future vertical Lift (FVL) Initiative[C]// The AHS International 71th Annual Forum & Technology Display. Virginia Beach: AHS, 2015:1-10.
[3] EHING R,MC M,WILSON P. Bell V-280 Valor: JMR TD Flight Test Update-Year2[C]// The Vertical Flight So-ciety’s 75th Annual Forum & Technology Display. Phila-delphia: AHS, 2019:1-8.
[4] BOWLES P O,MATALANIS C,BATTISTI M,et al. Full-Configuration CFD Analysis of the S-97 RAIDERTM[C]// The VFS 75th Annual Forum & Tech-nology Display, Philadelphia: AHS, 2019:1-12.
[5] LORBER P,BOWLES P,FOX E. Wind tunnel testing for the SB>1 defiant joint multi-role technology demonstra-tor[C]//The AHS International 73rd Annual Forum & Technology Display, Texas, 2017:1-18.
[6] EHINGER R,MC M,WILSON P. Bell V-280 valor: a flight test update[C]// The AHS International 74th Annual Forum & Technology Display. Phoenix: AHS, 2018:1-13.
[7] Defense Science Board Washington DC. Technology and Innovation Enablers for Superiority in 2030: ADA608507[R].Washington DC:Defense Science Board, 2013.
[8] BLACHA M,FINK A,EGLIN P,et al. ."Clean Sky 2":exploring new rotorcraft high speed configura-tions[C]//The 43rd European Rotorcraft Foru. Mi-lan:ERF,2017:1-12.
[9] BLACHA M,GARCIA R A,SCHELCHER M. The challenges for the integration of the drive shaft in the rac-er's wing configuration [C]// The Vertical Flight Society 75th Annual Forum & Technology Display. Pennsylvania: AHS, 2019:1-11.
[10] GARCIAA A,BARAKOS G N. Numerical simulations on the ERICA tiltrotor[J].Aerospace Science and Tech-nology, 2017:171-191.
[11] MAISEL M D,GIULIANETTI D J,DUGAN D C. The history of the xv-15 tilt rotor research aircraft : NASA SP-2000-4517[R].Washington: NASA, 2000.
[12] DETORE J A,GAFFEY T M.The stopped-rotor variant of the proprotor VTOL aircraft[J]. Journal of the Ameri-can Helicopter Society,1970,15(3):45-56.
[13] CHERY M C, SUPERVISOR J. The ABC helicop-ter[C]// AIAA/AHS VTOL Research, Design, and Oper-ations Meeting. Atlanta:AIAA, 1969:1-5.
[14] ROSENSTEIN H. Aerodynamic development of the V-22 tilt rotor[C]// The 12th European Rotorcraft Forum, Garmisch: ERF, 1986:1-30.
[15] WENTRUP M,YIN J,KUNZE P, et al. An overview of DLR compound rotorcraft aerodynamics and aeroa-coustics activities within the cleansky2 NACOR pro-ject[C]//The AHS International 74th Annual Forum & Technology Display. Phoenix: AHS, 2018: 1-16.
[16] SCHRAGE D P, STANZIONE K. Assessing the impact of hybrid distributed electric propulsion on VTOL air-craft design & system effectiveness[C]//The AHS Inter-national 74th Annual Forum &Technology Display. Phoenix: AHS, 2018:1-11.
[17] RUDDELL A J. Advancing blade concept (ABC) tech-nology demonstrator: TR-81-d-5[R]. Stratford: AVRADCOM, 1981.
[18] ARTHUR W L, SIMON D.XH-59A ABCTM aircraft flight tests at ft. rucker alabam[J].Aircraft Engineer-ing ,1982:1-5.
[19] BAGAI A. Aerodynamic design of the x2 technology demonstrator main rotor blade[C]//The 64th Annual Na-tional Forum of AHS. Montreal: AHS, 2008: 1-16.
[20] ARENTS D N. An assessment of the hover performance of the xh-59a advancing blade concept demonstration helicopter:USAAMRDL-TN-25[R]. Fort:USAAMRDL,1977.
[21] WALSH D,WEINER S, ARIFIAN K, et al. Develop-ment testing of the sikorsky x2 technology? demonstra-tor[C]// The 65th Annual Forum of the American Heli-copter Society International. Grapevine: AHS, 2009:1-11.
[22] BOUWER S, KAISER E. Design and development of the main rotor gearbox for the sikorsky boeing sb>1 de-fiant jmr technology demonstrator aircraft[C]// The Verti-cal Flight Society’s 75th Annual Forum &Technology Display. Philadelphia: AHS, 2019:1-9.
[23] PATRYHOW R. Sikorsky adapted to meet the u.s. army fara program timeline[C]// The Vertical Flight Society’s 77th Annual Forum & Technology Display. Virtual: AHS,2021:1-11.
[24] 徐敏.倾转旋翼机的发展与关键技术综述[J].直升机技术,2003,(2):40-44.
XU M.The development and key technology review of the tilt-rotor aircraft[J]. Helicopter Technique,2003,(2): 40-44(in Chinese).
[25] 陈恒,左晓阳,张玉琢等.倾转旋翼飞机技术发展研究[J].飞行力学,2007,25(1):5-8(in Chinese).
CHEN H,ZUO X Y,ZHANG Y Z,et al. Research on the development of tilt-rotor aircraft technology[J]. Flight Dynamics,2007,25(1):5-8.
[26] THOMASON T H.The bell helicopter XV-3&XV-15 experimental aircraft-lessons learned[J].AIAA-90-3265-CP:1-10.
[27] MEHRA R K,PRASANTH R K,GOPALAWAMY S. XV-15 tilt-rotor flight control system design using model predictive control[C]//Aerospace Conference, IEEE,1998.
[28] 薛蒙,孙强.倾转旋翼机军事需求与关键技术分析[J].直升机技术,2020,(1):47-49,27.
XUE M,SUN Q. The military demand and key technical analysis of the tilt-rotor aircraft[J]. Helicopter Technique, 2020,(1):47-49,27(in Chinese).
[29] 杨军,吴希明,凡永华等.倾转旋翼机飞行控制[M].航空工业出版社,2006.
YANG J,WU X M,FAN Y H,et al. Flight control of the tilt-rotor aircraft[M]. Aviation industry press,2006(in Chinese).
[30] 张庆,殷永亮,吴超等.美军倾转旋翼机的发展和事故分析[J].科学之友,2011,(15):126-128.
ZHANG Q,YIN Y L,WU C.Development and Crash Analysis of The American Army Inclines and Transfers to the Gyroplane[J].Friend of Science Ama-teurs,2011,(15):126-128(in Chinese).
[31] BOLKCOM C.V-22 osprey tilt-rotor air-craft[J].Congressional Research Service Reports,2005.
[32] GERYLER J. V-22 Osprey tilt-eotor aircraft:background and issues for congress, congressional re-search service[J],CRS Report for Congress,2011.
[33] 肖江涛.新型无人倾转旋翼机过渡状态飞行控制律设计[D].南京航空航天大学,2021.
XIAO J T.Design of Flight Control Law for New Con-figuration Unmanned Tilt-rotor Aircrafit in Transiton Atate[D].NUAA,2021(in Chinese).
[34] 刘乾坤.电驱无人倾转旋翼飞行器动力总成设计与仿真[D].南京航空航天大学,2020.
LIU Q K, Design and Simulation of Electric Drive Un-manned Tilting Rotorcraft Powertrain[D].NUAA, 2020(in Chinese).
[35] 尹欣繁,车兵辉,章贵川等.国外复合式高速直升机发展现状与关键技术[J].飞航导弹,2019,(11):56-60.
YIN X F,CHE B H,ZHANG G C,et al. The status and key technologies of multi-type high-speed helicopter de-velopment in foreign countries[J].Aerodynamic Missile Journal,2019,(11):56-60(in Chinese).
[36] 余震,王永红.复合式高速直升机传动系统关键技术分析[J].航空动力学报,2018,(3):66-68.
YU Z,WANG Y H. Key technical analysis of compound high-speed helicopter transmission system[J]. Journal of Aerospace Power, 2018,(3):66-68(in Chinese).
[37] 黄明其,徐栋霞,何龙等.常规旋翼构型复合式高速直升机发展概况及关键技术[J].航空动力学报,2021,36(6):1156-1168.
HUANG M Q,XU D X,HE L,et al. The development of conventional rotor configuration compound high-speed helicopter development and key technology[J]. Journal of Aerospace Power,2021,36(6):1156-1168(in Chinese).
[38] 丁达文.单旋翼复合式高速直升机动力学建模及振动特征分析[D].南京航空航天大学,2021.
DING D W. Modeling and vibration characteristics of single-rotor complex high-speed helicopter[D]. Journal of Nanjing University of Aeronautics & Astro-nautics,2021(in Chinese).
[39] 何振亚.复合式高速直升机飞行性能研究[D].南京航空航天大学,2021.
HE Z D. Research on the performance of compound high-speed helicopter flight[D]. Journal of Nanjing Uni-versity of Aeronautics & Astronautics,2021(in Chinese).
[40] HEAD E. Vahana eVTOL aims for“direct to autono-my”[M],2018.
[41] David D.North, Ronald C.Busan, Greg Howland. De-sign and Fabrication of the Langley Aerodrome[C]// 8th Distributed Electric Propution VTOL Tested. AIAA Scitech Forum, 2021.
[42] AIRBUS. Vahana has come to an end. But a new chapter at Airbus has just begun[M].2019.
[43] DAVID D N, RONALD C B, GREG H. Design and fabrica-tion of the langley aerodrome no.8 distributed electric pro-pution VTOL tested[M].2021.
[44] ROBERT W M. NASA’s LA-8: generating public eV-TOL data[M].2022.
[45] Bagai A. Aerodynamic Design of the X2 Technology De-monstrator Main Rotor Blade[C]//The 64th Annual Na-tional Forum of AHS, Montreal, 2008: 1-16.
[46] Peter F,Zhao J G, et al. S-97 RAIDER wake-empennage interaction flight data and correlation [C]//The 77th An-nual Forum of the VFS, Fairfax, 2021.
[47] George Jacoellis, Farhan Gandhi. Investigation of per-formance loads and vibrations of a coaxial helicopter in high speed-flight [C]//The 72nd Annual Forum of the AHS, West Palm Beach,2016.
[48] SYAL M,LEISHMAN J G. Aerodynamic optimization study of a coaxial eotor in hovering flight[J]. Journal of the American Helicopter Society, 2012,57(4):1-15.
[49] LEISHMAN J G ,SYAL M. Figure of merit definition for coaxial rotors[J]. Journal of the American Helicopter Society, 2008,53(3):290.
[50] Tom Berger, Chris L. Flight control design and simula-tion handling qualities assessment of high-speed ro-torcraft [C]//The 75th Annual Forum of the VFS, Phila-delphia, 2019.
[51] Umberto Saetti. Rotorcraft flight control design with alleviation of unsteady rotor loads [D]. Pennsylvania State University, USA, 2019.
[52] Walsh D, Weiner S, et al. High airspeed testing of the Sikorsky X2 Technology(TM) demonstrator [C]//The 67th Annual Forum of the AHS, Virginia Beach, 2011.
[53] Erez Eller.X2? Load Alleviating Controls [C] //The 68th Annual Forum of AHS, Texas, 2012: 1-3.
[54] Blackwell R. and Millot T. Dynamics design characteris-tics of the Sikorsky X2 technology demonstrator air-craft[C]//The 64th AHS Annual Forum Proceedings, Montreal, 2008: 1-13
[55] Hyeonsoo Yeo, Wayne Johnson. Investigation of Maxi-mum Blade Loading Capability of Lift-Offset Ro-tors[C]//Presented at the AHS 69th Annual Forum, Phoenix, Arizona,2013: 21–23.
[56] Jeong In go, Do Hyung kim, Jae Sang park. Perfor-mance and Vibration Analyses of Lift-Offset Helicop-ters[J]. Ineternational Journal of Aerospace Engineering, 2017.
[57] Joseph Schmaus, Inderjit Chopra. Performance and Loads of a Model Coaxial Rotor Part II Prediction Vali-dations[C]//The 72th Annual Forum of the AHS, West Palm Beach, Florida, 2016.
[58] LEE Y L,KIM D H,PARKA J S. Vibration reduction simulations of alift-offset compound helicopter using two active control techniques[J]. Aerospace Science and Technology,2020:106-181.
[59] KWON Y M,HONG S B,PARK J S,et al. Active vibra-tion reductions of a lift-offset compound helicopter using individual blade pitch control with multiple harmonic in-puts[J]. Aircraft Engineering and Aerospace Technology. 2022,94/6 :994–1008.
[60] BANG S W,HONG S B,BEEN Y,et al. Active airframe vibration control study using a small-scale model for lift-offset compound helicopter[J]. International Journal of Aeronautical and Space Sciences, 2023,24:77-91.
[61] R. Blackwell, T. Millott.Dynamics Design Characteristics of the Sikorsky X2 TechnologyTM Demonstrator Air-craft[C]//The 64th Annual Forum of the AHS, West Palm Beach, Florida, 2008.
[62] Rysdyk R, Calise A J, Chen R T N. Nonlinear adaptive control of tiltrotor aircraft using neural networks[R]. SAE Technical Paper, 1997.
[63] 刘佳豪,李高华,王福新.倾转过渡状态旋翼-机翼气动干扰特性计算分析[J]. 航空学报,2022, 43(7):1-10.
LIU J H, LI G H,WANG F X. Calculation Analysis of Rotor-Wing Aerodynamic Interference Characteristics in Conversion Mode[J]. Acta Aeronautica et Astronautica Sinica, 2022,43(7):1-10(in Chinese).
[64] Rysdyk R, Calise A J, Chen R T N. Nonlinear adaptive control of tiltrotor aircraft using neural networks[R]. SAE Technical Paper, 1997.
[65] Sobol I M, Statnikov R B. Selecting optimal parameters in multicriteria problems [C]//The 2nd ed. Moscow: Dro-fa, 2006: 89-105.
[66] Bell V-280 system identification and model validation with flight test data using the joint input-output meth-od[C]//Ertical Flight Society’s 76th Annual Forum & Technology Display, Virtual ,2020:6-89.
[67] 董凌华.倾转旋翼回转颤振参数影响规律研究[J].航空科学技术,2015,15(11):49-55.
Dong L H. Research on the influence rules of Proprotor flutter parameters of tilting rotor[J]. Aeronautical Science & Technology, 2015,15(11):49-55(in Chinese).
[68] Acree C W,Peyran R J,Johnson W.Rotor Design Options for Improving Tiltrotor Whirl-Flutter Stability Mar-gins[J].Journal of the American Helicopter Society, 2001, 46(2):87-95.
[69] Vanaken J M. Alleviation of whirl-flutter on a joined-wing tilt-rotor aircraft configuration using active con-trols[C]//The 47th AHS Annual Fo-rum,Phoenix,AZ,Proceedings,1991,26:1-27.
[70] 王福新,黄明其.倾转旋翼飞行器的风洞试验技术综述[J].试验流体力学,2005,19(4):86-89.
WANG F X,HUANG M Q.A summary on the wind tunnel test techniques for tilting rotor aircraft[J].Journal of Experiments in Fluid Mechanics,2005,19(4):86-89(in Chinese).
[71] Yeo H. Investigation of UH-60A Rotor Performance and Loads at High Advance Ratios[C]//The American Heli-copter Society 68th Annual Forum., Texas: AHS, 2012:576-587.
[72] Frey F, Thiemeier J, Ohrle C, et al. Aerodynamic Interac-tions on Airbus Helicopters' Compound Helicopter RACER in Cruise Flight[C]//The Vertical Flight Society 75th Annual Forum & Technology Display. Pennsylvania: AHS, 2019:1-19.
[73] TOROPOV M Y,STEPANOV S Y. Modeling of heli-copter flight imitation in the vortex ring state[J].Russian Aero-nautics(Iz VUZ),2016,59(4):517-522.
[74] ORCHARD M, SOUYHAMPTON U O, NAW-MANS, et al. Some design issues for the optimization of the compound helicopter configuration[C]//Proceedings of American Heli-copter Society 56th Annual Forum. Virginia Beach, Virginia: AHS, 2000.
[75] THORSEN A T. A unified control methodology for a compound rotorcraft in fundamental and aerobatic ma-neuvering flight[EB/OL]. 2016. https://etda.libraries.psu.edu/files/final_submissions/13553.
[76] Ronan B. Numerical analysis of rotor/propeller aerody-namic interactions on high speed compound helicopter[J]. Journal of the American Helicopter Society, 2022, 67(1), 1-15.
[77] Constantin O, Felix F, Jakob T, et al. Compound helicop-ter X3 in high speed flight: correlation of simulation and flight test[C]//The Vertical Flight Society 75th Annual Forum and Technology Display, Philadelphia, 2019:836-874.
[78] Hoover CB, Shen J, Kreshock Ar. Propeller Whirl Flut-ter Stability And Its Influence On X-57 Aircraft De-sign[J]. Jour-nal of Aircraft, 2018, 55(5): 2169-2175.
[79] RONALD C B, PATRICK C M, DAVID B H, BENJAMIN M S. Wind tunnel testing techniques for a tandem tilt-wing distributed electric propulsion VTOL aircraft[M].2020.
[80] KATHY B. Ten-engine electric plane completes success-ful flight test [EB/OL].[2015-11-24].
[81] GRAHAM WARWICK,徐德康. NASA 的多发 VTOL 无人机进行飞行试验[J].国际航空,2015(6):76-77.
GRAHAM WARWICK,XU D K.NASA Multiple VTOL Drones Fly Tests[J].International Avia-tion,2015(6):76-77(in Chinese).
[82] Hoover CB, Shen J, Kreshock Ar. Propeller Whirl Flut-ter Stability And Its Influence On X-57 Aircraft De-sign[J]. Jour-nal of Aircraft, 2018, 55(5): 2169-2175.
[83] Mills B, Datta A. Fundamental Studies Of Variable-Voltage Hybrid-Electric Powertrains[J]. Journal of the American Helicopter Society, 2021, 66(2): 1-14.
[84] 王伟,周洲,祝小平等.基于 CR 理论的大柔性太阳能无人机非线性配平及飞行载荷分析[J].西北工业大学学报,2015,(4):566-572.
WANG W,ZHOU Z,ZHU X P. CR Approach of Nonlin-ear Trim and Flight Load Analysis of Very Flexible Solar Powered UAV[J].Journal of Northwestern Polytech-nicalUniversi-ty,2015,(4):566-572(in Chinese).
文章导航

/