液体火箭发动机工程研制中的结构强度研究进展
收稿日期: 2023-05-29
修回日期: 2023-07-25
录用日期: 2023-09-05
网络出版日期: 2023-10-08
基金资助
国家自然科学基金(11702204);液体火箭发动机技术重点实验室基金(HTKJ2022KL011004)
Research progress on structural strength of liquid rocket engine during engineering development phase
Received date: 2023-05-29
Revised date: 2023-07-25
Accepted date: 2023-09-05
Online published: 2023-10-08
Supported by
National Natural Science Foundation of China(11702204);Foundation of Science and Technology on Liquid Rocket Engine Laboratory(HTKJ2022KL011004)
液体火箭发动机为中国天地运输系统的主动力,承担绝大部分航天器的发射任务。发动机在高压、高温、高转速、强振动等极端恶劣的条件下工作,所面临结构强度问题非常突出。发动机结构强度问题起始于方案论证阶段,贯穿于产品整个寿命周期直至发射任务完成,而发动机在结构设计、载荷与使用环境、材料、制造过程、试验及强度评估等诸多方面存在不确定性和尚未解决的深层次问题,使结构强度成为影响发动机安全性和可靠性的一项重要因素。以发动机工程研制中的结构强度为出发点,总结探讨了发动机在结构强度设计及验证过程中若干个重要方面,涵盖载荷与使用环境、安全系数、材料、试验测试、损伤检测、验证及评估等,为发动机结构强度设计体系探索及新型发动机预研提供研究思路。
穆朋刚 , 李斌潮 , 王珺 , 宋少伟 , 时寒阳 . 液体火箭发动机工程研制中的结构强度研究进展[J]. 航空学报, 2024 , 45(11) : 529065 -529065 . DOI: 10.7527/S1000-6893.2023.29065
Liquid rocket engines are used as the main propulsion system for Chinese space transportation, which offer the most spacecraft launch for space activities. During the rigorous working conditions, such as high pressure, high temperature, high rotational speed and strong vibration environment, structural strength of engine and its components have become momentous technical problems to be solved in the engine development process. Structural strength problems began with the preliminary design stage of project operated throughout the product full life cycle and ended with completing the launch missions. However, many uncertainties and profound problems, including structural design, loads and serving environments, materials, manufacturing process, test measure, destructive evaluation, test verification process and strength assessment, caused the structural strength to become an important factor that affected the safety and reliability of engine. Therefore, taking the structural strength as fundamental starting point, the aforementioned essential problems and elements in structural strength design, test verification process of liquid rocket engines were summarized and analyzed, and research ideas for structure strength design system exploration and the new engine pre-research were proposed and discussed in this paper.
1 | 黄道琼, 王振, 杜大华. 大推力液体火箭发动机中的动力学问题[J]. 中国科学: 物理学 力学 天文学, 2019, 49: 024503. |
HUANG D Q, WANG Z, DU D H. Structural dynamics of the large thrust liquid rocket engines[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2019, 49: 024503 (in Chinese). | |
2 | 李斌, 闫松, 杨宝锋. 大推力液体火箭发动机结构中的力学问题[J]. 力学进展, 2021, 51(4): 831-864 |
LI B, YAN S, YANG B F. Mechanical problems of the large thrust liquid rocket engine[J]. Advances in Mechanics, 2021, 51(4): 831-864 (in Chinese). | |
3 | GOETZ O K, MONK J C. Combustion device failures during space shuttle main engine development[C]∥ 5th International Symposium on Liquid Space Propulsion Long Life Combustion Devices Technology. 2003. |
4 | JUE F H, KUCK F. Space shuttle main engine (SSME) options for the future shuttle[C]∥ 38th AIAA/ASME/-SAE/ASEE Joint Propulsion Conference & Exhibit. 2002. |
5 | WORLUND A L, HASTINGS J H. Space shuttle main engine evolutions[C]∥ 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2001. |
6 | JUE F H. Space shuttle main engine-thirty years of innovation: NASA-46693 [R]. 2002. |
7 | RYAN R S. A history of aerospace problems, their solution, their lessons: NASA-TP-3653[R]. 1996. |
8 | LANGHLIN R B. Space shuttle main engine orientation[R]. Space Transportation System Training Data, Rocketdyne Propulsion & Power, 1998. |
9 | LI B. Research on key technologies for reusable liquid rocket engines[J]. Aerospace China, 2022, 23(4): 24-34. |
10 | 段增斌. 中国大型液体火箭发动机研制[J]. 火箭推进, 2000(1): 13-28. |
DUAN Z B. Development of China's large liquid rocket engine[J]. Journal of Rocket Propulsion, 2000(1): 13-28 (in Chinese). | |
11 | 杨尔辅, 张振鹏, 崔定军. 液发推力室和涡轮泵故障监测与诊断技术研究[J]. 北京航空航天大学学报, 1999, 25(5): 619-622. |
YANG E F, ZHANG Z P, CUI D J. Study on fault monitoring and diagnosis techniques for thrust chamber and turbo-pump systems of liquid rocket engines[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(5): 619-622 (in Chinese). | |
12 | 殷谦, 张金容. 液体火箭发动机故障模式及分析[J].推进技术, 1997, 18(1): 22-25. |
YIN Q, ZHANG J R. Failure mode and analysis for liquid propellant rocket engines[J]. Journal of Propulsion Technology, 1997, 18(1): 22-25 (in Chinese). | |
13 | 吴建军, 张育林, 陈启智. 大型泵压式液体火箭发动机故障综合分析[J]. 导弹与航天运载技术, 1996(1): 10-15. |
WU J J, ZHANG Y L, CHEN Q Z. Fault analysis for large liquid rocket engine with turbopump system[J]. Missiles and Space Vehicles, 1996(1): 10-15 (in Chinese). | |
14 | 杜大华, 穆朋刚, 田川, 等. 液体火箭发动机管路断裂失效分析及动力优化[J]. 火箭推进, 2018(3): 16-22. |
DU D H, MU P G, TIAN C, et al. Failure analysis and dynamics optimization of pipeline for liquid rocket engine[J]. Journal of Rocket Propulsion, 2018(3): 16-22 (in Chinese). | |
15 | GORACKE B D, LEVACK D J, NIXON R F. The F-1A and the SSME: a route to the future[C]∥ AIAA Space Programs and Technologies Conference and Exhibit. 1993. |
16 | SUTTON G P. History of liquid propellant rocket engines in the United States[J]. Journal of Propulsion and Power, 2003, 19(6): 978-1007. |
17 | YANG V, ANDERSON W. Liquid rocket engine combustion instability[M]. Washington, D.C.:AIAA, 1995. |
18 | NASA. Space vehicle design criteria (Chemical propulsion). Liquid rocket engine fluid-cooled combustion chambers : NASA SP-8087[S]. Cleveland, OH: NASA Lewis Research Center, 1972. |
19 | NASA. Space vehicle design criteria (Chemical propulsion). Turbopump systems for liquid rocket engines : NASA SP-8107[S]. Cleveland, OH: NASA Lewis Research Center, 1974. |
20 | NASA. Space vehicle design criteria (Chemical propulsion). Liquid rocket engine turbines : NASA SP-8110[S]. Cleveland, OH: NASA Lewis Research Center, 1974. |
21 | NASA. Space vehicle design criteria (Chemical propulsion). Liquid rocket engine nozzles : NASA SP-8120[S]. Cleveland, OH: NASA Lewis Research Center, 1976. |
22 | NASA. Space vehicle design criteria (Structures). Design development testing : NASA SP-8043[S]. Hampton, VA: NASA Langley Research Center, 1970. |
23 | NASA. Space vehicle design criteria (Structures). Qualification testing : NASA SP-8044[S]. Hampton, VA: NASA Langley Research Center, 1970. |
24 | NASA. Space vehicle design criteria (Structures). Acceptance testing : NASA SP-8045[S]. Hampton, VA: NASA Langley Research Center, 1970. |
25 | NASA. Strength and life assessment requirements for liquid-fueled space propulsion system engines : NASA-STD-5012[S]. Washington, DC: NASA, 2006. |
26 | Air Force Space and Missile Systems Center Standard. Evaluation and test requirements for liquid rocket engines: SMC-S-025 [S]. EL Segundo, CA: Air Force Space Command, 2017. |
27 | 国防科学技术工业委员会. 液体火箭发动机通用规范: [S]. 北京: 国防科工委军标出版发行部, 2004. |
Commission of Science, Technology and Industry for National Defense. General specification for liquid propellant rocket engine: [S]. Beijing: Military Standards Publication and Distribution Department of Commission of Science, Technology and Industry for National Defense, 2004 (in Chinese). | |
28 | 国防科学技术工业委员会. 可贮存推进剂液体火箭发动机试验项目和要求: [S]. 北京: 国防科工委军标出版发行部, 2004. |
Commission of Science, Technology and Industry for National Defense. Test item and requirement for storable liquid propellant rocket engine: [S]. Beijing: Military Standards Publication and Distribution Department of Commission of Science, Technology and Industry for National Defense, 2004 (in Chinese). | |
29 | 国家国防科技工业局. 液体火箭发动机推力室通用规范: [S]. 北京: 中国航天标准化研究所, 2015. |
State Administration of Science, Technology and Industry for National Defense. General specification for liquid rocket engine thrust chambers: [S]. Beijing: China Aerospace Standardization Research Institute, 2015 (in Chinese). | |
30 | 中国航天工业总公司. 液体火箭发动机管路系统通用要求: [S]. 北京: 中国航天标准化研究所, 1998. |
China Aerospace Industry Corporation. General requirements for liquid rocket engine piping system: [S]. Beijing: China Aerospace Standardization Research Institute, 1998 (in Chinese). | |
31 | 郑新前, 王钧莹, 黄维娜, 等. 航空发动机不确定性设计体系探讨[J]. 航空学报, 2023, 44(7): 027099. |
ZHENG X Q, WANG J Y, HUANG W N, et al. Uncertainty-based design system for aeroengines[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 027099 (in Chinese). | |
32 | HIMELBLAU H, KERN D L, MANNING J E, et al. Dynamic environmental criteria : NASA-HDBK-7005[S]. Washington, D.C.: NASA, 2001. |
33 | 休泽尔 D K. 液体火箭发动机现代工程设计[M]. 朱宁昌, 等,译. 北京: 中国宇航出版社, 2004. |
HUZEL D K. Modern engineering for design of liquid rocket engine[M]. ZHU N C, et al. translated. Beijing: China Aerospace Publishing House, 2004 (in Chinese). | |
34 | 国防科学技术工业委员会. 运载器、上面级和航天器试验要求: [S]. 北京: 国防科工委军标出版发行部, 2006. |
Commission of Science, Technology and Industry for National Defense. Test requirements for launch, upper-stage and space vehicles: [S]. Beijing: Military Standards Publication and Distribution Department of Commission of Science, Technology and Industry for National Defense, 2006 (in Chinese). | |
35 | 雅各布·约布·维科尔. 航天器结构[M]. 董瑶海, 周徐斌, 满孝颖, 等,译. 北京: 国防工业出版社, 2017. |
WIJKER J. Spacecraft structures[M]. DONG Y H, ZHOU X B, MAN X Y, et al. translated. Beijing: National Defense Industry Press, 2017 (in Chinese). | |
36 | European Cooperation for Space Standardization. Space engineering-Mechanical-Part 2: Structural: ECSS-E-30 Part 2A [S]. Noordwijk: ESA Requirements and Standard Division, 2000. |
37 | BARRETT R E. Techniques for predicting localized vibratory environments of rocket vehicles: NASA Technical Note D-1836 [R]. 1963. |
38 | ZIPAY J J, MODLIN C T, LARSEN C E. The ultimate factor of safety for aircraft and spacecraft—its history, applications and misconceptions[C]∥ 57th AIAA/-ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2016. |
39 | International Organization for Standardization. Space systems—Structural design-Determination of loading levels for static qualification testing of launch vehicles: [S]. 2000. |
40 | 中国航天工业总公司. 液体火箭发动机推力室设计规范: [S]. 北京: 中国航天标准化研究所, 1996. |
China Aerospace Industry Corporation. Design specification for liquid rocket engine thrust chamber: [S]. Beijing: China Aerospace Standardization Research Institute, 1996 (in Chinese). | |
41 | 航空航天工业部. 推进剂贮箱设计准则: [S]. 北京: 中国航天标准化研究所, 1990. |
Ministry of Aviation and Aerospace Industry. Design criteria for propellant storage tank: [S]. Beijing: China Aerospace Standardization Research Institute, 1990 (in Chinese). | |
42 | 航天工业部. 钛合金球形气瓶设计准则: [S]. 北京: 中国航天标准化研究所, 1989. |
Ministry of Aerospace Industry. Design criteria for titanium alloy spherical cylinder: [S]. Beijing: China Aerospace Standardization Research Institute, 1989 (in Chinese). | |
43 | NASA. Structural design and test factors of safety for spaceflight hardware : NASA-STD-5001B[S]. Washington, D.C.: NASA, 2014. |
44 | NASA. Load analyses of spacecraft and payloads : NASA-STD-5002[S]. Washington, D.C.: NASA, 1996. |
45 | United States Department of Defense. Metallic materials and elements for aerospace vehicle structures: MIL-H [S]. Washington, D.C.: Department of Defense, 2003. |
46 | Battelle Institute. Metallic materials properties development and standardization handbook: MMPDS-11 [S]. Federal Aviation Administration, 2016. |
47 | NASA. Fracture control requirements for spaceflight hardware : NASA-STD-5019[S]. Washington, D.C.: NASA, 2008. |
48 | 国防科学技术工业委员会. 液体火箭发动机地面试验测量系统规范: [S]. 北京:国防科工委军标出版发行部, 1993. |
Commission of Science, Technology and Industry for National Defense. Specification for testing on ground of liquid propellant rocket engine—Measurement systems: [S]. Beijing: Military Standards Publication and Distribution Department of Commission of Science, Technology and Industry for National Defense, 1993 (in Chinese). | |
49 | 国防科学技术工业委员会. 液体火箭发动机地面试验测量方法: [S]. 北京: 国防科工委军标出版发行部, 1997. |
Commission of Science, Technology and Industry for National Defense. Liquid propellant rocket engine—Measurement method for testing on ground: [S]. Beijing: Military Standards Publication and Distribution Department of Commission of Science, Technology and Industry for National Defense, 1997 (in Chinese). | |
50 | 中国航天工业总公司. 液体火箭发动机应变测量方法: [S]. 北京: 中国航天标准化研究所, 1997. |
China Aerospace Industry Corporation. Strain measurement method for liquid rocket engine: [S]. Beijing: China Aerospace Standardization Research Institute, 1997 (in Chinese). | |
51 | 国家国防科技工业局. 液体火箭发动机试验动态压力测量方法: [S]. 北京: 中国航天标准化研究所, 2013. |
State Administration of Science, Technology and Industry for National Defense. Measuring method for dynamic pressure of liquid rocket engine test: [S]. Beijing: China Aerospace Standardization Research Institute, 2013 (in Chinese). | |
52 | 马双民. 液体火箭发动机质量管理与检测技术[M]. 北京: 中国宇航出版社, 2017. |
MA S M. Quality management and testing technology of liquid rocket engine[M]. Beijing: China Aerospace Publishing House, 2017 (in Chinese). | |
53 | 魏超, 马双民. 液体火箭发动机焊接技术[M]. 北京: 中国宇航出版社, 2016. |
WEI C, MA S M. Welding technology of liquid rocket engine[M]. Beijing: China Aerospace Publishing House, 2016 (in Chinese). | |
54 | 谭永华, 许艺峰, 张权明, 等. 液体动力制造过程检测技术应用与挑战[J]. 中国航天, 2018(10): 7-13. |
TAN Y H, XU Y F, ZHANG Q M, et al. Applications and challenges of manufacturing process measurement technology in the field of liquid rocket power[J]. Aerospace China, 2018(10): 7-13 (in Chinese). | |
55 | 单黎波. 波纹板夹层结构高温钎焊焊缝X射线影像分析[J]. 火箭推进, 2006(2): 37-40. |
SHAN L B. X ray image analysis of high temperature brazing seam for corrugated plate sandwich structure[J]. Journal of Rocket Propulsion, 2006(2): 37-40 (in Chinese). | |
56 | 刘国增. 钛合金导管的涡流检测[J]. 火箭推进, 2011(3): 48-51. |
LIU G Z. Eddy current testing of Ti alloy ducts [J]. Journal of Rocket Propulsion, 2011(3): 48-51 (in Chinese). | |
57 | BETTS E M, EDDLEMAN D E, REYNOLDS D C, et al. Using innovative technologies for manufacturing rocket engine hardware[C]∥ JANNAF 6th Liquid Propulsion Conference. 2011. |
58 | 刘贞, 任文坚, 彭东剑, 等. 射线计算机成像技术在发动机变壁厚产品检测中的试验研究[J]. 宇航材料工艺, 2021(6): 85-88. |
LIU Z, REN W J, PENG D J, et al. CR technology in detection of engine variable wall thickness products[J]. Aerospace Materials & Technology, 2021(6): 85-88 (in Chinese). | |
59 | NASA. Fracture control requirements for payloads using the space shuttle : NASA-STD-5003[S]. Washington, D.C.: NASA, 1996. |
60 | NASA. Nondestructive evaluation requirements for fracture critical metallic components : NASA-STD-5009[S]. Washington, D.C.: NASA, 2008. |
61 | Air Force Space and Missile Systems Center Standard. Test requirements for launch, upper-stage and space vehicles: SMC-S-016 [S]. EL Segundo CA: Air Force Space Command, 2014. |
62 | MSFC. Fastrac 60K structural assessment plan: MSFC-PLAN-2676[R]. Huntsville AL: MSFC, 1996. |
63 | MSFC. Space transportation main engine structural strength and life program requirements: M [S]. Huntsville AL: MSFC, 1992. |
64 | 中国人民解放军总装备部. 军用装备实验室环境试验方法: ~150.28A—2009[S]. 北京.总装备部军标出版发行部, 2009. |
General Armament Department of the Chinese People's Liberation Army. Laboratory environmental test methods for military material: ~150.28A—2009[S]. Beijing: Military Standards Publication and Distribution Department of General Armament Department, 2009 (in Chinese). | |
65 | 国防科学技术工业委员会. 导弹武器系统压力容器缺陷安全评定方法: [S]. 北京: 国防科工委军标出版发行部, 1997. |
Commission of Science, Technology and Industry for National Defense. Safety evaluation methods of the defects for pressure vessel of missile system: [S]. Beijing: Military Standards Publication and Distribution Department of Commission of Science, Technology and Industry for National Defense, 1997 (in Chinese). | |
66 | 贺小帆, 朱俊贤. 军用飞机结构耐久性严重谱编制与应用研究进展[J]. 航空学报, 2022, 43(12): 025070. |
HE X F, ZHU J X. Advances in durability severe spectrum: Development and application for military aircraft structures[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 025070 (in Chinese). | |
67 | 王彬文, 陈先民, 苏运来, 等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报, 2021, 42(5): 524651. |
WANG B W, CHEN X M, SU Y L, et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524651 (in Chinese). |
/
〈 |
|
〉 |