可重复使用运载火箭技术发展综述
收稿日期: 2023-09-08
修回日期: 2023-09-14
录用日期: 2023-09-27
网络出版日期: 2023-09-27
A review of reusable launch vehicle technology development
Received date: 2023-09-08
Revised date: 2023-09-14
Accepted date: 2023-09-27
Online published: 2023-09-27
包为民 . 可重复使用运载火箭技术发展综述[J]. 航空学报, 2023 , 44(23) : 629555 -629555 . DOI: 10.7527/S1000-6893.2023.29555
Reusable launch vehicles are an important way for humans to enter and exit space on a large scale and at a low cost. Starting from the technical requirements of vertical takeoff and landing reusable launch vehicles, this paper summarizes the technical challenges faced by vertical takeoff and landing reusable launch vehicles, and analyzes the key technologies of vertical takeoff and landing reusable launch vehicles. The research progress and future development directions of key technologies for vertical takeoff and landing reusable launch vehicles are then discussed in terms of overall optimization design, power, structure and thermal protection, navigation, guidance and control, and health management, which can provide reference for the technical research of reusable launch vehicles.
1 | 包为民, 汪小卫. 航班化航天运输系统发展展望[J]. 宇航总体技术, 2021, 5(3): 1-6. |
BAO W M, WANG X W. Prospect of airline-flight-mode aerospace transportation system[J]. Astronautical Systems Engineering Technology, 2021, 5(3): 1-6 (in Chinese). | |
2 | 王小军. 中国航天运输系统未来发展展望[J]. 导弹与航天运载技术, 2021(1): 1-6. |
WANG X J. Future development of space transportation system of China[J]. Missiles and Space Vehicles, 2021(1): 1-6 (in Chinese). | |
3 | 龙乐豪, 蔡巧言, 王飞, 等. 重复使用航天运输系统发展与展望[J]. 科技导报, 2018, 36(10): 84-92. |
LONG L H, CAI Q Y, WANG F, et al. Development of reusable space transportation technologies[J]. Science & Technology Review, 2018, 36(10): 84-92 (in Chinese). | |
4 | 陈晓飞, 孟庆尧, 杨树涛, 等. 运载火箭回收模式及发展展望[J]. 中国航天, 2023(9): 9-17. |
CHEN X F, MENG Q Y, YANG S T, et al. Launch vehicle recovery mode and development prospects[J]. Aerospace China, 2023(9): 9-17 (in Chinese). | |
5 | 宋征宇, 汪小卫, 陈蓉, 等. 远程空天运输系统总体设计与控制技术的科学挑战[J]. 宇航总体技术, 2023, 7(2): 35-41. |
SONG Z Y, WANG X W, CHEN R, et al. Challenges of long-range aerospace transportation system design and control technology[J]. Astronautical Systems Engineering Technology, 2023, 7(2): 35-41 (in Chinese). | |
6 | DRESIA K, JENTZSCH S, WAXENEGGER-WILFING G, et al. Multidisciplinary design optimization of reusable launch vehicles for different propellants and objectives[J]. Journal of Spacecraft and Rockets, 2021, 58(4): 1017-1029. |
7 | 刘秉, 李东, 黄兵, 等. “长征五号”火箭总体优化与设计[J]. 深空探测学报(中英文), 2021, 8(4): 344-353. |
LIU B, LI D, HUANG B, et al. The overall optimization and design of the Long March 5 launch vehicle[J]. Journal of Deep Space Exploration, 2021, 8(4): 344-353 (in Chinese). | |
8 | 黄瑞松, 李浩, 韦常柱, 等. 亚轨道可重复使用飞行器轨迹/总体参数一体化优化方法[J]. 中国惯性技术学报, 2018, 26(2): 261-267. |
HUANG R S, LI H, WEI C Z, et al. Integrated optimization method of trajectory/system parameters for sub-orbital reusable launch vehicles[J]. Journal of Chinese Inertial Technology, 2018, 26(2): 261-267 (in Chinese). | |
9 | 龚春林, 谷良贤, 粟华. 亚轨道重复使用运载器总体多学科优化方法[J]. 固体火箭技术, 2012, 35(1): 5-10, 16. |
GONG C L, GU L X, SU H. Multidisciplinary design optimization method for suborbital reusable launch vehicle[J]. Journal of Solid Rocket Technology, 2012, 35(1): 5-10, 16 (in Chinese). | |
10 | 程川, 刘阳, 王吉飞, 等. 反向喷流对运载火箭返回段气动特性影响研究[J]. 宇航学报, 2023, 44(3): 379-388. |
CHENG C, LIU Y, WANG J F, et al. Investigation of reverse jet effects on aerodynamic characteristics of returned launch vehicle[J]. Journal of Astronautics, 2023, 44(3): 379-388 (in Chinese). | |
11 | 许晨舟, 杜涛, 韩忠华, 等. 机器学习数据融合方法在火箭子级栅格舵气动特性建模应用中的比较研究[J]. 实验流体力学, 2022, 36(3): 79-92. |
XU C Z, DU T, HAN Z H, et al. Comparison of machine learning data fusion methods applied to aerodynamic modeling of rocket first stage with grid fins[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 79-92 (in Chinese). | |
12 | 张宇佳, 左光, 徐艺哲, 等. Starship新型舵面形式气动特性数值模拟[J]. 航空学报, 2021, 42(2): 624058. |
ZHANG Y J, ZUO G, XU Y Z, et al. Numerical simulation on aerodynamic characteristics of new type control surface of Starship[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 624058 (in Chinese). | |
13 | 邓思超, 汪小卫, 徐振亮, 等. 基于栅格舵和滑翔翼的垂直起降火箭再入返回气动特性[J]. 深空探测学报(中英文), 2022, 9(5): 483-491. |
DENG S C, WANG X W, XU Z L, et al. An analysis of aerodynamic characteristics of reusable rocket’s first sub-stage with grid rudder and glider[J]. Journal of Deep Space Exploration, 2022, 9(5): 483-491 (in Chinese). | |
14 | 贾洪印, 张培红, 赵炜, 等. 火箭子级垂直回收布局气动特性及发动机喷管影响[J]. 航空学报, 2021, 42(2): 623995. |
JIA H Y, ZHANG P H, ZHAO W, et al. Aerodynamic characteristics of vertical recovery of rocket sub-stage and influence of engine nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 623995 (in Chinese). | |
15 | 刘浩, 李钧, 冯刚. 逆向喷流对可回收火箭气动特性的影响研究[J/OL]. 推进技术, (2023-04-21) [2023-09-08].. |
LIU H, LI J, FENG G. Effects of opposing jet on aerodynamic characteristics of reusable rocket[J/OL]. Journal of Propulsion Technology, (2023-04-21) [2023-10-25]. (in Chinese). | |
16 | AOGAKI T, KITAMURA K, NONAKA S. High angle-of-attack pitching moment characteristics of slender-bodied reusable rocket[J]. Journal of Spacecraft and Rockets, 2018, 55(6): 1476-1489. |
17 | KLEVANSKI J, ECKER T, RIEHMER J, et al. Aerodynamic studies in preparation for CALLISTO - reusable VTVL launcher first stage demonstrator[C]∥69th International Astronautical Congress. Bremen: DLR, 2018: 1-11. |
18 | TATSUKAWA T, NONOMURA T, OYAMA A, et al. Aerodynamic design exploration for reusable launch vehicle using genetic algorithm with navier stokes solver[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2012, 10(28): 55-63. |
19 | 彭科, 胡凡, 张为华, 等. 栅格翼气动特性及其应用研究综述[J]. 固体火箭技术, 2015, 38(4): 458-464, 471. |
PENG K, HU F, ZHANG W H, et al. Review of aerodynamic characteristics and application of grid fin[J]. Journal of Solid Rocket Technology, 2015, 38(4): 458-464, 471 (in Chinese). | |
20 | CHARBONNIER D, VOS J, MARWEGE A, et al. Computational fluid dynamics investigations of aerodynamic control surfaces of a vertical landing configuration[J]. CEAS Space Journal, 2022, 14(3): 517-532. |
21 | 李志文, 张磊, 李亮, 等. 星舰气动布局性能特点分析[J]. 空气动力学学报, 2022, 40(5): 1-14. |
LI Z W, ZHANG L, LI L, et al. Performance and characteristics analysis on the Starship aerodynamic configuration[J]. Acta Aerodynamica Sinica, 2022, 40(5): 1-14 (in Chinese). | |
22 | CHEN J C, GARBA J A, WADA B K. Estimation of payload loads using rigid-body interface accelerations[J]. Journal of Spacecraft and Rockets, 1979, 16(2): 74-80. |
23 | 邱吉宝, 张正平, 李海波. 航天器与运载火箭耦合分析相关技术研究进展[J]. 力学进展, 2012, 42(4): 416-436. |
QIU J B, ZHANG Z P, LI H B. Progresses in research on coupled analysis technology for space vehicle and launch vehicles[J]. Advances in Mechanics, 2012, 42(4): 416-436 (in Chinese). | |
24 | QIU Z P, XIA Y Y, YANG J L. The static displacement and the stress analysis of structures with bounded uncertainties using the vertex solution theorem[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(49-52): 4965-4984. |
25 | 闫松, 李斌, 李锋. 结构动力学模型修正技术在液体火箭发动机中的应用[J]. 火箭推进, 2018, 44(1): 27-35, 52. |
YAN S, LI B, LI F. Application of structural dynamic model updating technique in liquid rocket engine[J]. Journal of Rocket Propulsion, 2018, 44(1): 27-35, 52 (in Chinese). | |
26 | 杜大华, 李斌. 液体火箭发动机结构动力学设计关键技术综述[J]. 航空学报, 2023, 44(10): 37-53. |
DU D H, LI B. Key structural dynamic design technologies in liquid rocket engines: Review[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 37-53 (in Chinese). | |
27 | 顾孟奇, 朱家才, 郭万林, 等.可重复使用火箭结构的疲劳耐久性与可靠性展望[J/OL]. 航空学报, (2023-03-20) [2023-09-08].. |
GU M Q, ZHU J C, GUO W L, et al. Prospects for fatigue durability and reliability of reusable rocket structures[J/OL]. Acta Aeronautica et Astronautica Sinica, (2023-03-20) [2023-10-25]. (in Chinese). | |
28 | 徐振亮, 邓思超, 殷之平, 等. 重复使用运载火箭发动机疲劳载荷特征识别方法[J]. 深空探测学报(中英文), 2022, 9(5): 506-511. |
XU Z L, DENG S C, YIN Z P, et al. Identification method of fatigue load characteristics for reusable launch vehicle engine based on Gaussian distribution[J]. Journal of Deep Space Exploration, 2022, 9(5): 506-511 (in Chinese). | |
29 | 贾洲侠, 吴振强, 吴建国, 等. 飞行器气动热与结构传热双向耦合研究[J]. 强度与环境, 2019, 46(6): 16-23. |
JIA Z X, WU Z Q, WU J G, et al. Study on two-way coupled fluid-structure-thermal analysis for hypersonic vehicles[J]. Structure & Environment Engineering, 2019, 46(6): 16-23 (in Chinese). | |
30 | 杨国涛, 岳振江, 刘莉. 基于自适应采样的高超声速飞行器气动热全局快速预示[J]. 航空学报, 2023, 44(6): 138-155. |
YANG G T, YUE Z J, LIU L. Rapid prediction of global hypersonic vehicle aerothermodynamics based on adaptive sampling[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(6): 138-155 (in Chinese). | |
31 | CASIANO M J, HULKA J R, YANG V. Liquid-propellant rocket engine throttling: A comprehensive review[J]. Journal of Propulsion and Power, 2010, 26(5): 897-923. |
32 | LI B, ZHANG R W, ZHANG M, ET AL.. A review of throttling technology development for large-thrust liquid rocket engines[J]. Aerospace China, 2021, 22(2): 14-24. |
33 | 姚照辉, 范家璇. 变推力液体火箭发动机推力调节技术研究综述及发展趋势[J]. 推进技术, 2022, 43(9): 6-19. |
YAO Z H, FAN J X. Review and trend for thrust regulation technology of variable-thrust liquid rocket engine[J]. Journal of Propulsion Technology, 2022, 43(9): 6-19 (in Chinese). | |
34 | 刘上, 刘红军, 陈建华, 等. 流量调节器在泵压式供应系统中的动力学特性[J]. 火箭推进, 2014, 40(2): 28-35. |
LIU S, LIU H J, CHEN J H, et al. Dynamical characteristics of flow regulator in pump feed system[J]. Journal of Rocket Propulsion, 2014, 40(2): 28-35 (in Chinese). | |
35 | 张淼, 徐浩海, 李斌, 等. 流量调节器管路系统自激振荡特性研究[J]. 推进技术, 2021, 42(7): 1493-1500. |
ZHANG M, XU H H, LI B, et al. Auto oscillation of flow regulator pipe system[J]. Journal of Propulsion Technology, 2021, 42(7): 1493-1500 (in Chinese). | |
36 | JUNG T. Static characteristics of a bellows-type flow regulator for the thrust control of a liquid rocket engine[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228(11): 2036-2045. |
37 | 张波涛, 李平, 王凯, 等. 变推力液体火箭发动机中针栓喷注器研究综述[J]. 宇航学报, 2020, 41(12): 1481-1489. |
ZHANG B T, LI P, WANG K, et al. Review on pintle injector of throttling liquid rocket engine[J]. Journal of Astronautics, 2020, 41(12): 1481-1489 (in Chinese). | |
38 | SON M, RADHAKRISHNAN K, KOO J, et al. Design procedure of a movable pintle injector for liquid rocket engines[J]. Journal of Propulsion and Power, 2016, 33(4): 858-869. |
39 | 张紫豪, 吴继平, 成鹏, 等. 结构参数对可调节针栓喷注器喷雾特性的影响[J]. 火箭推进, 2022, 48(5): 9-17. |
ZHANG Z H, WU J P, CHENG P, et al. Effects of structural parameters on the spray characteristics of variable pintle injectors[J]. Journal of Rocket Propulsion, 2022, 48(5): 9-17 (in Chinese). | |
40 | 尕永婧, 王浩苏, 张青松, 等. 垂直着陆过程推进剂流动行为特性及影响分析[J]. 深空探测学报(中英文), 2021, 8(1): 42-50. |
GA Y J, WANG H S, ZHANG Q S, et al. Propellant flow characteristics in tank and related impact analysis during the vertical landing stage[J]. Journal of Deep Space Exploration, 2021, 8(1): 42-50 (in Chinese). | |
41 | HARTWIG J W. Propellant management devices for low-gravity fluid management: Past, present, and future applications[J]. Journal of Spacecraft and Rockets, 2017, 54(4): 808-824. |
42 | ROMERO-CALVO á, URBANSKY V, YUDINTSEV V, et al. Novel propellant settling strategies for liquid rocket engine restart in microgravity[J]. Acta Astronautica, 2023, 202: 214-228. |
43 | ZHOU S, KONG Y, ZHANG S, et al. Numerical simulation of sloshing in the propellant tank of reusable rocket vehicle using meshfree method[J]. Computational Particle Mechanics, 2023, 10(1): 173-184. |
44 | 罗盟, 陈士强, 李大鹏, 等. 星舰动力特点及再入过程推进剂流动仿真研究[J]. 南京航空航天大学学报, 2021, 53(S1): 9-16. |
LUO M, CHEN S Q, LI D P, et al. Characteristics of starship propulsion system and numerical simulation of propellant flow during reentry[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(S 1): 9-16 (in Chinese). | |
45 | WHITE N C, TROIAN S M. Why capillary flows in slender triangular grooves are so stable against disturbances[J]. Physical Review Fluids, 2019, 4(5): 054003. |
46 | 朱文杰, 杜大程, 黄立钠, 等. 可重复启动低温上面级的推进剂管理装置研究[J]. 宇航总体技术, 2021, 5(5): 12-17. |
ZHU W J, DU D C, HUANG L N, et al. Propellant management device concepts for multiple ignitions cryogenic upper stages[J]. Astronautical Systems Engineering Technology, 2021, 5(5): 12-17 (in Chinese). | |
47 | 李斌, 闫松, 杨宝锋. 大推力液体火箭发动机结构中的力学问题[J]. 力学进展, 2021, 51(4): 831-864. |
LI B, YAN S, YANG B F. Mechanical problems of the large thrust liquid rocket engine[J]. Advances in Mechanics, 2021, 51(4): 831-864 (in Chinese). | |
48 | 包为民, 汪小卫, 董晓琳. 航班化航天运输系统对动力的发展需求与技术挑战[J]. 火箭推进, 2021, 47(4): 1-5. |
BAO W M, WANG X W, DONG X L. Development demands and challenges of propulsion technology for space transportation system in airline-flight-mode[J]. Journal of Rocket Propulsion, 2021, 47(4): 1-5 (in Chinese). | |
49 | 张蒙正, 张玫. 航天运载器重复使用液体动力若干问题探讨[J]. 火箭推进, 2019, 45(4): 9-15. |
ZHANG M Z, ZHANG M. Discussion on some problems of reusable liquid-propellant engine[J]. Journal of Rocket Propulsion, 2019, 45(4): 9-15 (in Chinese). | |
50 | 张楠, 孙慧娟. 低温液体火箭发动机重复使用技术分析[J]. 火箭推进, 2020, 46(6): 1-12. |
ZHANG N, SUN H J. Analysis on the reusable cryogenic liquid rocket engine technology[J]. Journal of Rocket Propulsion, 2020, 46(6): 1-12 (in Chinese). | |
51 | 金平, 吕俊杰, 戚亚群, 等. 可重复使用液体火箭发动机寿命问题探讨[J]. 宇航总体技术, 2023, 7(4): 51-59. |
JIN P, LYU J J, QI Y Q, et al. Discussion on the life of reusable liquid rocket engine[J]. Astronautical Systems Engineering Technology, 2023, 7(4): 51-59 (in Chinese). | |
52 | 郑大勇, 颜勇, 孙纪国. 液氧甲烷发动机重复使用关键技术发展研究[J]. 导弹与航天运载技术, 2018(2): 31-35. |
ZHENG D Y, YAN Y, SUN J G. Development study of key reusable technology for LOX/methane engine[J]. Missiles and Space Vehicles, 2018(2): 31-35 (in Chinese). | |
53 | 羽中豪, 金平, 蔡国飙. 可重复使用液体火箭发动机设计参数对推力室身部棘轮应变的影响[J]. 载人航天, 2018, 24(2): 245-252. |
YU Z H, JIN P, CAI G B. Influence of design parameters of reusable rocket engines on ratchet strain of chambers[J]. Manned Spaceflight, 2018, 24(2): 245-252 (in Chinese). | |
54 | 康玉东, 孙冰. 液体火箭发动机推力室可重复使用技术[J]. 航空动力学报, 2012, 27(7): 1659-1664. |
KANG Y D, SUN B. Reusable technology for liquid rocket engine thrust chamber[J]. Journal of Aerospace Power, 2012, 27(7): 1659-1664 (in Chinese). | |
55 | 孙纪国, 何学青, 阳代军, 等. 大推力氢氧发动机关键制造技术[J]. 火箭推进, 2022, 48(2): 117-126. |
SUN J G, HE X Q, YANG D J, et al. Key manufacturing technology for large thrust LH2/LOX cycle engine[J]. Journal of Rocket Propulsion, 2022, 48(2): 117-126 (in Chinese). | |
56 | 丁兆波, 刘倩, 王天泰, 等. 220t级补燃循环氢氧发动机推力室研制[J]. 火箭推进, 2021, 47(4): 13-21. |
DING Z B, LIU Q, WANG T T, et al. Development for thrust chamber of 220 t staged combustion cycle LOX/LH2 engine[J]. Journal of Rocket Propulsion, 2021, 47(4): 13-21 (in Chinese). | |
57 | 刘士杰, 刘登丰, 马晓秋, 等. 重复使用液体火箭发动机涡轮泵安全寿命预估方法[J]. 航空动力学报, 2022, 37(5): 1079-1089. |
LIU S J, LIU D F, MA X Q, et al. Predicting method of safety life of reusable liquid rocket engine turbopump[J]. Journal of Aerospace Power, 2022, 37(5): 1079-1089 (in Chinese). | |
58 | 李元恒, 张宏剑, 宋征宇, 等. 运载火箭垂直返回着陆机构构型优化与设计[J]. 深空探测学报(中英文), 2022, 9(5): 470-476. |
LI Y H, ZHANG H J, SONG Z Y, et al. Configuration optimization and design of vertical landing mechanisms of reusable launch vehicles[J]. Journal of Deep Space Exploration, 2022, 9(5): 470-476 (in Chinese). | |
59 | 袁晗, 王小军, 张宏剑, 等. 重复使用火箭着陆结构稳定性分析[J]. 力学学报, 2020, 52(4): 1007-1023. |
YUAN H, WANG X J, ZHANG H J, et al. Stability analysis of reusable launch vehicle landing structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1007-1023 (in Chinese). | |
60 | 胡振兴, 张希, 宋征宇, 等. 基于地面拦阻系统的火箭垂直着陆回收机构设计[J]. 深空探测学报(中英文), 2022, 9(5): 477-482. |
HU Z X, ZHANG X, SONG Z Y, et al. A rocket vertical landing recovery mechanism based on a ground arresting scheme[J]. Journal of Deep Space Exploration, 2022, 9(5): 477-482 (in Chinese). | |
61 | 贾山, 赵建华, 陈金宝, 等. 可复用运载火箭着陆装置展开与着陆分析[J]. 航天返回与遥感, 2022, 43(5): 11-23. |
JIA S, ZHAO J H, CHEN J B, et al. Unfolding and landing analysis of reusable rocket landing device[J]. Spacecraft Recovery & Remote Sensing, 2022, 43(5): 11-23 (in Chinese). | |
62 | 田保林, 高海波, 于海涛, 等. 一种垂直起降运载器着陆支腿设计与展开控制[J]. 机械工程学报, 2020, 56(19): 171-181. |
TIAN B L, GAO H B, YU H T, et al. Design and deployment control of landing leg for a vertical takeoff and landing vehicle[J]. Journal of Mechanical Engineering, 2020, 56(19): 171-181 (in Chinese). | |
63 | YUE S A, NIE H, ZHANG M, et al. Dynamic analysis for vertical soft landing of reusable launch vehicle with landing strut flexibility[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(4): 1377-1396. |
64 | WEI X H, LIN Q, NIE H, et al. Investigation on soft-landing dynamics of four-legged lunar lander[J]. Acta Astronautica, 2014, 101: 55-66. |
65 | 岳帅, 林轻, 杜忠华, 等. 运载器着陆装置展开动力学及影响因素分析[J]. 宇航学报, 2021, 42(6): 697-709. |
YUE S, LIN Q, DU Z H, et al. Analysis on deployment characteristics and influence factors of landing gear for launch vehicle[J]. Journal of Astronautics, 2021, 42(6): 697-709 (in Chinese). | |
66 | 王英超, 高海波, 于海涛, 等. 垂直降落运载器着陆动力学建模与稳定性分析[J]. 机械工程学报, 2020, 56(11): 37-47. |
WANG Y C, GAO H B, YU H T, et al. Landing dynamics modeling and stability analysis of vertical-landing carrier[J]. Journal of Mechanical Engineering, 2020, 56(11): 37-47 (in Chinese). | |
67 | 黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41(12): 023716. |
HUANG H Y, SU L J, LEI C S, et al. Reusable thermal protective materials: Application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 023716 (in Chinese). | |
68 | SHI S B, DAI C X, WANG Y F. Design and optimization of an integrated thermal protection system for space vehicles:AIAA-2015-3553[R]. Reston: AIAA, 2015. |
69 | LE V T, GOO N S, KIM J Y. Thermomechanical behavior of superalloy thermal protection system under aerodynamic heating[J]. Journal of Spacecraft and Rockets, 2019, 56(5): 1432-1448. |
70 | 时圣波, 王韧之, 严立, 等. 运载火箭尾段防热/承载一体化热防护系统设计及性能分析[J]. 上海航天(中英文), 2020, 37(4): 64-73. |
SHI S B, WANG R Z, YAN L, et al. Design and property analysis of integrated thermal protection system for tail cabin of launch vehicle[J]. Aerospace Shanghai (Chinese & English), 2020, 37(4): 64-73 (in Chinese). | |
71 | REIMER T, DI MARTINO G, PETKOV I, et al. Design, manufacturing and assembly of the STORT hypersonic flight experiment thermal protection system: AIAA-2023-3089[R]. Reston: AIAA, 2023. |
72 | LE V T, HAN C, GOO N S. Design assessment of metallic thermal protection system for reentry vehicles: Thermomechanical and impact properties:AIAA-2023-1136[R]. Reston: AIAA, 2023. |
73 | GUO J R, FU S B, DENG Y P, et al. Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions[J]. Nature, 2022, 606(7916): 909-916. |
74 | MARLEY C D, DRISCOLL J F. Optimization of active and passive thermal protection systems for a hypersonic vehicle[J]. Journal of Aircraft, 2021, 59(1): 173-183. |
75 | 乔砚淙, 刘鹏, 潘瑶, 等. 飞行器主动冷却热防护通道设计与分析[J]. 工程热物理学报, 2023, 44(1): 226-235. |
QIAO Y C, LIU P, PAN Y, et al. Design and analysis of active cooling thermal protection channel for hypersonic aircraft[J]. Journal of Engineering Thermophysics, 2023, 44(1): 226-235 (in Chinese). | |
76 | 宋征宇, 王聪. 运载火箭返回着陆在线轨迹规划技术发展[J]. 宇航总体技术, 2019, 3(6): 1-12. |
SONG Z Y, WANG C. Development of online trajectory planning technology for launch vehicle return and landing[J]. Astronautical Systems Engineering Technology, 2019, 3(6): 1-12 (in Chinese). | |
77 | MALYUTA D, REYNOLDS T P, SZMUK M, et al. Convex optimization for trajectory generation: a tutorial on generating dynamically feasible trajectories reliably and efficiently[J]. IEEE Control Systems Magazine, 2022, 42(5): 40-113. |
78 | 高朝辉, 张普卓, 刘宇, 等. 垂直返回重复使用运载火箭技术分析[J]. 宇航学报, 2016, 37(2): 145-152. |
GAO Z H, ZHANG P Z, LIU Y, et al. Analysis of vertical landing technique in reusable launch vehicle[J]. Journal of Astronautics, 2016, 37(2): 145-152 (in Chinese). | |
79 | 乔浩, 李新国. 重复使用运载器原场返回方案与轨迹设计[J]. 固体火箭技术, 2017, 40(1): 110-114. |
QIAO H, LI X G. Return to launch site scheme and trajectory design for reusable launch vehicle[J]. Journal of Solid Rocket Technology, 2017, 40(1): 110-114 (in Chinese). | |
80 | BRENDEL E, HéRISSé B, BOURGEOIS E. Optimal guidance for toss back concepts of reusable launch vehicles[C]∥EUCASS 2019. Paris: EDP Sciences, 2019: 232. |
81 | 韦常柱, 琚啸哲, 徐大富, 等. 垂直起降重复使用运载器返回制导与控制[J]. 航空学报, 2019, 40(7): 322782. |
WEI C Z, JU X Z, XU D F, et al. Guidance and control for return process of vertical takeoff vertical landing reusable launching vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 322782 (in Chinese). | |
82 | LI Y, PANG B J, WEI C Z, et al. Online trajectory optimization for power system fault of launch vehicles via convex programming[J]. Aerospace Science and Technology, 2020, 98: 105682. |
83 | MIAO X Y, SONG Y, ZHANG Z G, et al. Successive convexification for ascent trajectory replanning of a multistage launch vehicle experiencing nonfatal dynamic faults[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 2039-2052. |
84 | 胡海峰, 王晋麟, 黄聪, 等. 运载火箭非致命故障下弹道规划制导和自适应控制重构技术[J]. 载人航天, 2022, 28(4): 439-448. |
HU H F, WANG J L, HUANG C, et al. Trajectory planning guidance and adaptive reconfiguration control of launch vehicle under non-fatal failure[J]. Manned Spaceflight, 2022, 28(4): 439-448 (in Chinese). | |
85 | LU P, CALLAN R. Propellant-optimal powered descent guidance revisited[J]. Journal of Guidance, Control, and Dynamics, 2023, 46(2): 215-230. |
86 | CHERRY G. A general, explicit, optimizing guidance law for rocket-propelled spaceflight:AIAA-1964-638[R]. Reston: AIAA, 1964. |
87 | KLUMPP A R. Apollo lunar descent guidance[J]. Automatica, 1974, 10(2): 133-146. |
88 | YANG R Q, LIU X F. Gravity-turn-based precise landing guidance for reusable rockets[C]∥Advances in Guidance, Navigation and Control. Berlin: Springer, 2022: 3423-3434. |
89 | SIMPLíCIO P, MARCOS A, BENNANI S. Guidance of reusable launchers: improving descent and landing performance[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(10): 2206-2219. |
90 | LU P. Propellant-optimal powered descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(4): 813-826. |
91 | 袁晗, 王小军, 牟宇, 等. 火箭返回制导动力着陆段的自适应启动方法[J]. 宇航学报, 2022, 43(7): 890-901. |
YUAN H, WANG X J, MOU Y, et al. Adaptive powered descent initiation of rocket return guidance[J]. Journal of Astronautics, 2022, 43(7): 890-901 (in Chinese). | |
92 | ACIKMESE A B, PLOEN S. A powered descent guidance algorithm for Mars pinpoint landing: AIAA-2005-6285[R]. Reston: AIAA, 2005. |
93 | LIU X F. Fuel-optimal rocket landing with aerodynamic controls[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(1): 65-77. |
94 | 王劲博, 崔乃刚, 郭继峰, 等. 火箭返回着陆问题高精度快速轨迹优化算法[J]. 控制理论与应用, 2018, 35(3): 389-398. |
WANG J B, CUI N G, GUO J F, et al. High precision rapid trajectory optimization algorithm for launch vehicle landing[J]. Control Theory & Applications, 2018, 35(3): 389-398 (in Chinese). | |
95 | SONG Z Y, WANG C. Powered soft landing guidance method for launchers with non-cluster configured engines[J]. Acta Astronautica, 2021, 189: 379-390. |
96 | XIE L, ZHANG H B, ZHOU X, et al. Hp-adaptive pseudospectral convex optimization for rocket powered landing trajectory planning[C]∥2019 Chinese Automation Congress (CAC). Piscataway: IEEE Press, 2020: 895-900. |
97 | CHEN X L, ZHANG R, XUE W C, et al. Robust neighboring optimal guidance for endoatmospheric powered descent under uncertain wind fields[C]∥2022 34th Chinese Control and Decision Conference (CCDC). Piscataway: IEEE Press, 2023: 1491-1496. |
98 | SIMPLíCIO P, MARCOS A, BENNANI S. Launcher flight control design using robust wind disturbance observation[J]. Acta Astronautica, 2021, 186: 303-318. |
99 | 伊鑫, 潘豪, 黄聪, 等. 垂直回收运载火箭高精度姿态控制技术[J]. 深空探测学报(中英文), 2022, 9(5): 492-497. |
YI X, PAN H, HUANG C, et al. High precision attitude control technology of vertical landing returning rocket[J]. Journal of Deep Space Exploration, 2022, 9(5): 492-497 (in Chinese). | |
100 | 包为民. 航天智能控制技术让运载火箭“会学习”[J]. 航空学报, 2021, 42(11): 525055. |
BAO W M. Space intelligent control technology enables launch vehicle to “self-learning”[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 525055 (in Chinese). | |
101 | FURFARO R, SCORSOGLIO A, LINARES R, et al. Adaptive generalized ZEM-ZEV feedback guidance for planetary landing via a deep reinforcement learning approach[J]. Acta Astronautica, 2020, 171: 156-171. |
102 | 梁小辉, 胡昌华, 周志杰, 等. 基于自适应动态规划的运载火箭智能姿态容错控制[J]. 航空学报, 2021, 42(4): 524915. |
LIANG X H, HU C H, ZHOU Z J, et al. ADP-based intelligent attitude fault-tolerant control for launch vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524915 (in Chinese). | |
103 | 陈书钊, 楚龙飞, 杨秀梅, 等. 状态预测神经网络控制应用于小型可回收火箭[J]. 航空学报, 2019, 40(3): 322286. |
CHEN S Z, CHU L F, YANG X M, et al. Application of state prediction neural network control algorithm in small reusable rocket[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 322286 (in Chinese). | |
104 | SáNCHEZ-SáNCHEZ C, IZZO D. Real-time optimal control via deep neural networks: Study on landing problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(5): 1122-1135. |
105 | WANG J B, MA H J, LI H X, et al. Real-time guidance for powered landing of reusable rockets via deep learning[J]. Neural Computing and Applications, 2023, 35(9): 6383-6404. |
106 | YOU S X, WAN C H, DAI R, et al. Learning-based onboard guidance for fuel-optimal powered descent[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(3): 601-613. |
107 | HENDRIX S G, KENNY V, YOU S X, et al. Experimental testing for a learning-based powered-descent guidance algorithm:AIAA-2022-0952[R]. Reston, AIAA, 2022. |
108 | LI W B, GONG S P. Free final-time fuel-optimal powered landing guidance algorithm combing lossless convex optimization with deep neural network predictor[J]. Applied Sciences, 2022, 12(7): 3383. |
109 | 杜飞, 徐超, 鱼则行. 可重复使用运载器结构健康监测技术研究进展[J]. 宇航学报, 2019, 40(10): 1177-1186. |
DU F, XU C, YU Z X. Research progress on structural health monitoring technology for reusable launch vehicles[J]. Journal of Astronautics, 2019, 40(10): 1177-1186 (in Chinese). | |
110 | JOHNSON J. Integrated health monitoring approaches and concepts for expendable and reusable space launch vehicles:AIAA-1990-2679[R]. Reston, AIAA, 1990. |
111 | ECKE W, GRIMM S, LATKA I, et al. Optical fiber grating sensor network based on highly reliable fibers and components for spacecraft health monitoring[C]∥SPIE’s 8th Annual International Symposium on Smart Structures and Materials. San Francisco: SPIE, 2001: 160-167. |
112 | CHAN P. Fiber optics sensing system (FOSS) at NASA Armstrong flight research center (AFRC): Summary and recent deployments:AFRC-E-DAA-TN60829[R]. Reston, AIAA, 2018. |
113 | 张霞, 焉宁, 郝宇星, 等. 智慧火箭数据获取技术探索与展望[J]. 宇航计测技术, 2023, 43(2): 64-70. |
ZHANG X, YAN N, HAO Y X, et al. Exploration and prospect of smart rocket data acquisition technology[J]. Journal of Astronautic Metrology and Measurement, 2023, 43(2): 64-70 (in Chinese). | |
114 | LU X L, QIU L, YUAN S F, et al. Research on guided wave propagation characteristics of C/C thermal protection structures[J]. Journal of Physics: Conference Series, 2022, 2252(1): 012023. |
115 | PAPADOPOULOS G, TILIAKOS N, BENEL G, et al. Non-intrusive sensor for in situ measurement of recession rate of heat shield ablatives: AIAA-2010-3330[R]. Reston: AIAA, 2010. |
116 | 詹景坤, 代京, 彭小波, 等. 重复使用运载器预测与健康管理(PHM)技术研究[J]. 计算机测量与控制, 2015, 23(6): 1848-1850, 1862. |
ZHAN J K, DAI J, PENG X B, et al. Research on architecture of prognostics and health management of reusable launch vehicle[J]. Computer Measurement & Control, 2015, 23(6): 1848-1850, 1862 (in Chinese). | |
117 | NIE Y, CHENG Y Q, WU J J. Dynamic cloud back-propagation networks and its application in fault diagnostic for liquid-propellant rocket engines[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(3): 583-594. |
118 | PARK S Y, AHN J. Deep neural network approach for fault detection and diagnosis during startup transient of liquid-propellant rocket engine[J]. Acta Astronautica, 2020, 177: 714-730. |
119 | 张振臻, 陈晖, 高玉闪. 基于滑动时间窗主成分分析的液体火箭发动机传感器故障诊断方法[J]. 推进技术, 2022, 43(9): 343-353. |
ZHANG Z Z, CHEN H, GAO Y S. Sliding time windows principal component analysis based fault diagnosis method for liquid rocket engine sensors[J]. Journal of Propulsion Technology, 2022, 43(9): 343-353 (in Chinese). | |
120 | TSUTSUMI S, HIRABAYASHI M, SATO D, et al. Data-driven fault detection in a reusable rocket engine using bivariate time-series analysis[J]. Acta Astronautica, 2021, 179: 685-694. |
121 | KIANFAR K, JOODAKI S, DASHTI I, et al. Lifetime estimation of heat pipes in space applications using particle filtering, Arrhenius and FIDES methods[J]. Thermal Science and Engineering Progress, 2021, 22: 100847. |
122 | DE CESARE M, SAVINO L, CEGLIA G, et al. Applied radiation physics techniques for diagnostic evaluation of the plasma wind and thermal protection system critical parameters in aerospace re-entry[J]. Progress in Aerospace Sciences, 2020, 112: 100550. |
123 | ZOU B J, LI W, YANG N, et al. Impact-induced damage recognition of aluminium alloy stiffened plate structure based on convolutional neural network[J]. IEEE Sensors Journal, 2021, 21(18): 20283-20295. |
124 | KHAN F, EKER O F, JENNIONS I K, et al. Prognostics of crack propagation in structures using time delay neural network[C]∥2015 IEEE Conference on Prognostics and Health Management (PHM). Piscataway: IEEE Press, 2015: 1-6. |
125 | 马波, 刘慧宇, 陈银超, 等. 预测与健康管理技术在飞行器飞控系统中的应用研究[J]. 航空兵器, 2020, 27(6): 91-96. |
MA B, LIU H Y, CHEN Y C, et al. Research on application of prognostics and health management technology in aircraft flight control system[J]. Aero Weaponry, 2020, 27(6): 91-96 (in Chinese). | |
126 | 宋征宇. 运载火箭远程故障诊断技术综述[J]. 宇航学报, 2016, 37(2): 135-144. |
SONG Z Y. The survey of launch vehicle long distance fault diagnosis technique[J]. Journal of Astronautics, 2016, 37(2): 135-144 (in Chinese). | |
127 | 李智, 姜悦, 蔡斐华, 等. 数据驱动的飞行器智能故障诊断系统研究[J]. 计算机测量与控制, 2021, 29(1): 50-53. |
LI Z, JIANG Y, CAI F H, et al. Study on a data-driven intelligent fault diagnosis system of spacecraft[J]. Computer Measurement & Control, 2021, 29(1): 50-53 (in Chinese). | |
128 | 王珏, 蔡巧言, 王飞, 等. 重复使用航天运输系统发射运维需求分析[J]. 导弹与航天运载技术, 2022(3): 1-7. |
WANG J, CAI Q Y, WANG F, et al. Requirements of operation and maintenance for reusable launch vehicles[J]. Missiles and Space Vehicles, 2022(3): 1-7 (in Chinese). | |
129 | 方志耕, 张程洁, 牛翠萍, 等. 面向航班化的可重复运载器可靠性维护技术与寿命分析[J]. 中国航天, 2023(9): 33-39. |
FANG Z G, ZHANG C J, NIU C P, et al. Airline-flight-mode oriented maintenance technology and lifetime analysis for reusable launch vehicles[J]. Aerospace China, 2023(9): 33-39 (in Chinese). | |
130 | 郑正路, 徐振亮, 汪小卫, 等. 可重复使用运载火箭箭体结构检测及维护方法研究[J]. 航天制造技术, 2016(1): 68-70. |
ZHENG Z L, XU Z L, WANG X W, et al. Research on detection and maintenance method for reusable launch vehicle structure[J]. Aerospace Manufacturing Technology, 2016(1): 68-70 (in Chinese). | |
131 | 刘士杰, 梁国柱. 重复使用液体火箭发动机可用度的数字仿真[J]. 北京航空航天大学学报, 2015, 41(12): 2319-2327. |
LIU S J, LIANG G Z. Digital simulation on reusable liquid rocket engine availability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(12): 2319-2327 (in Chinese). | |
132 | 庄方方, 汪小卫, 吴胜宝. 可重复使用运载火箭全寿命周期费用分析[J]. 导弹与航天运载技术, 2016(6): 82-85. |
ZHUANG F F, WANG X W, WU S B. Life cycle cost analysis on reusable launch vehicle[J]. Missiles and Space Vehicles, 2016(6): 82-85 (in Chinese). | |
133 | 张嘉益, 刘欣. 可重复使用航天器系统的可靠性分析[J]. 空间电子技术, 2023, 20(2): 40-47. |
ZHANG J Y, LIU X. Reliability analysis of reusable spacecraft system[J]. Space Electronic Technology, 2023, 20(2): 40-47 (in Chinese). | |
134 | JO B U, AHN J. Optimal staging of reusable launch vehicles for minimum life cycle cost[J]. Aerospace Science and Technology, 2022, 127: 107703. |
135 | 郭丞皓, 于劲松, 宋悦, 等. 基于数字孪生的飞机起落架健康管理技术[J]. 航空学报, 2023, 44(11): 180-198. |
GUO C H, YU J S, SONG Y, et al. Application of digital twin-based aircraft landing gear health management technology[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11): 180-198 (in Chinese). | |
136 | 祝青钰, 蒋觉义. 飞机健康管理标准研究综述[J]. 航空标准化与质量, 2021(6): 9-13. |
ZHU Q Y, JIANG J Y. Research summary for standards of airplane health management[J]. Aeronautic Standardization & Quality, 2021(6): 9-13 (in Chinese). |
/
〈 |
|
〉 |