临近空间技术

变构型飞行器多刚体非定常仿真技术

  • 张贺 ,
  • 刘清扬 ,
  • 李留刚 ,
  • 许靖尧
展开
  • 空间物理重点实验室,北京 100076
.E-mail: zhanghecalt@163.com

收稿日期: 2023-06-25

  修回日期: 2023-08-09

  录用日期: 2023-09-18

  网络出版日期: 2023-09-27

基金资助

国家重点研发计划(2019YFB1704204)

Multibody system unsteady simulation technology for morphing aircraft

  • He ZHANG ,
  • Qingyang LIU ,
  • Liugang LI ,
  • Jingyao XU
Expand
  • Key Laboratory of Space Physics,Beijing 100076,China

Received date: 2023-06-25

  Revised date: 2023-08-09

  Accepted date: 2023-09-18

  Online published: 2023-09-27

Supported by

National Key Research and Development Program of China(2019YFB1704204)

摘要

变构型飞行器能够根据飞行环境与飞行任务相应改变外形,在气动、控制、应用场景方面具有明显优势。为了设计合理的变构型飞行器分离/变形机构,需要依赖仿真工具识别设计风险、优化机构设计。针对各类变构型飞行器多刚体非定常问题的仿真需求,基于Udwadia-Kalaba方法构建了适用于各类约束问题的多刚体动力学模型,并开发了轻量化的多刚体动力学开源仿真软件MUSE。MUSE采用了面向对象的编程方式,使得用户使用时不必了解多刚体动力学方程的具体表达式,而只需根据实际的机械系统创建相应刚体对象与约束对象并指定对象间的连接关系。构建了MUSE与CFD求解器耦合计算框架,实现了变构型飞行器分离/变形过程的多刚体非定常仿真。验证算例表明,MUSE能够精确求解多刚体动力学问题,且MUSE与CFD的耦合计算能够很好地解决各类变构型飞行器变形/分离过程中面临的多刚体非定常仿真难题。

本文引用格式

张贺 , 刘清扬 , 李留刚 , 许靖尧 . 变构型飞行器多刚体非定常仿真技术[J]. 航空学报, 2023 , 44(S2) : 729421 -729421 . DOI: 10.7527/S1000-6893.2023.29421

Abstract

Morphing aircraft can adjust their shape to suit different flight environments and missions, which gives them significant advantages in terms of aerodynamics, control, and application scenarios. To design a feasible morphing aircraft separation/deformation mechanism, simulation tools are essential for identifying design risks and optimizing mechanism design. Aiming at the simulation requirements of various multibody system unsteady problems of morphing aircraft, a lightweight multibody dynamics open source simulation software MUSE was developed based on the Udwadia-Kalaba method. MUSE adopts an object-oriented programming method, which allows users to create corresponding rigid body objects and constraint objects according to the actual mechanical system without requiring users to understand the specific expressions of the multibody dynamics equations. A coupling calculation framework between MUSE and CFD solver was established in the present paper, which achieved the multibody system unsteady simulation of morphing aircraft separation/deformation process. The verification examples demonstrated that MUSE can accurately solve multibody dynamics problems, and the coupling calculation between MUSE and CFD can effectively overcome the multibody system unsteady simulation challenges faced by various morphing aircraft separation/deformation processes.

参考文献

1 陆宇平, 何真. 变体飞行器控制系统综述[J]. 航空学报200930(10): 1906-1911.
  LU Y P, HE Z. A survey of morphing aircraft control systems[J]. Acta Aeronautica et Astronautica Sinica200930(10): 1906-1911 (in Chinese).
2 CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: A review[J]. Chinese Journal of Aeronautics202235(5): 220-246.
3 BARARINAO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures201122(9): 823-877.
4 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报202243(10): 527449.
  RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527449 (in Chinese).
5 PONS A, CIRAK F. Multi-axis nose-pointing-and-shooting in a biomimetic morphing-wing Aircraft[J]. Journal of Guidance, Control, and Dynamics202346(3): 499-517.
6 AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences2021120: 100682.
7 YAN B B, DAI P, LIU R F, et al. Adaptive super-twisting sliding mode control of variable sweep morphing aircraft[J]. Aerospace Science and Technology201992: 198-210.
8 SNYDER M P, SANDERS B, EASTEP F E, et al. Vibration and flutter characteristics of a folding wing[J]. Journal of Aircraft200946(3): 791-799.
9 SMITH S B, NELSON D W. Determination of the aerodynamic characteristics of the mission adaptive wing[J]. Journal of Aircraft199027(11): 950-958.
10 CHEUNG K, CELLUCCI D, COPPLESTONE G, et al. Development of Mission Adaptive Digital Composite Aerostructure Technologies (MADCAT)[C]∥17th AIAA Aviation Technology, Integration, and Operations Conference. 2017: 4273.
11 张桢锴, 贾思嘉, 宋晨, 等. 柔性变弯度后缘机翼的风洞试验模型优化设计[J]. 航空学报202243(3): 226071.
  ZHANG Z K, JIA S J, SONG C, et al. Optimum design of wind tunnel test model for compliant morphing trailing edge[J]. Acta Aeronautica et Astronautica Sinica202243(3): 226071 (in Chinese).
12 梁帅, 杨林, 杨朝旭, 等. 基于Kalman滤波的变体飞行器T-S模糊控制[J]. 航空学报202041(S2): 724274.
  LIANG S, YANG L, YANG Z X, et al. Kalman filter based T-S fuzzy control for morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica202041(S2): 724274 (in Chinese).
13 王晨, 杨洋, 沈星, 等. 用于变体飞行器的波纹板等效强度模型及其优化设计[J]. 航空学报202243(6): 526146.
  WANG C, YANG Y, SHEN X, et al. An equivalent strength model of corrugated panel and optimization design for morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica202243(6): 526146 (in Chinese).
14 于惠勇, 李华峰, 曾捷, 等. 可变弯度机翼后缘形态重构光纤监测技术[J]. 航空学报202041(10): 223808.
  YU H Y, LI H F, ZENG J, et al. Monitoring technique for shape reconstruction of variable camber trailing edge based on optical fiber sensors[J]. Acta Aeronautica et Astronautica Sinica202041(10): 223808 (in Chinese).
15 尹维龙, 石庆华, 田东奎. 变体后缘的索网传动机构设计与分析[J]. 航空学报201334(8): 1824-1831.
  YIN W L, SHI Q H, TIAN D K. Design and analysis of transmission mechanism with cable networks for morphing trailing-edge[J]. Acta Aeronautica et Astronautica Sinica201334(8): 1824-1831 (in Chinese).
16 SAHU J, GRUENWALD B C, BURCHETT B T. Adaptive control validation using a MATLAB-based CFD/RBD coupled simulation[C]∥AIAA SCITECH 2023 Forum. 2023: 1171.
17 ERNST Z, DROSENDAHL M, ROBERTSON B E, et al. Development of a trajectory-centric CFD-RBD framework for advanced multidisciplinary/multiphysics simulation[C]∥ AIAA SCITECH 2022 Forum. 2022: 1793.
18 KAKIMAP B, HARGREAVES D M, OWEN J S. An investigation of plate-type windborne debris flight using coupled CFD-RBD models. Part I: model development and validation[J]. Journal of Wind Engineering and Industrial Aerodynamics2012111: 95-103.
19 SAINI D, SHAFEI B. Flight characteristics of rod-shaped windborne debris objects in atmospheric boundary layer winds[J]. Journal of Wind Engineering and Industrial Aerodynamics2022227: 105073.
20 黄阳阳, 姜毅, 李玉龙, 等. 子母弹结构特征对分离特性影响分析[J]. 现代防御技术202149(2): 35-42.
  HUANG Y Y, JIANG Y, LI Y L, et al. Impact analysis of structure characteristics of cluster bombs on separation characteristics[J]. Modern Defense Technology202149(2): 35-42 (in Chinese).
21 王巍, 刘君, 刘冰, 等. 火箭助推器从芯级飞行器动态分离过程的数值模拟[J]. 宇航学报200627(4): 766-770.
  WANG W, LIU J, LIU B, et al. Numerical simulation the process of the rocket booster separating form spaceship[J]. Journal of Astronautics200627(4): 766-770 (in Chinese).
22 UDWADIA F E, KALABA R E. Analytical dynamics: a new approach[M]. Cambridge: Cambridge University Press, 1996: 84-85.
23 UDWADIA F E, PHAILAUNG P. Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics[J]. Proceedings of the Royal Society A2006462: 2097-2117.
24 张来平, 邓小刚, 张涵信. 动网格生成技术及非定常计算方法进展综述[J]. 力学进展201040(4): 424-447.
  ZHANG L P, DENG X G, ZHANG H X. Reviews of moving grid generation techniques and numerical methods for unsteady flow[J]. Advances in Mechanics201040(4): 424-447 (in Chinese).
文章导航

/