激光武器反无人机集群作战运用及关键技术
收稿日期: 2023-08-17
修回日期: 2023-09-11
录用日期: 2023-09-13
网络出版日期: 2023-09-21
基金资助
国家社会科学基金军事学项目(2022-SKJJ-C-037);全军军事类研究生资助课题(JY2023A016)
Application and key technologies of laser weapons in anti-UAV swarm operations
Received date: 2023-08-17
Revised date: 2023-09-11
Accepted date: 2023-09-13
Online published: 2023-09-21
Supported by
National Social Science Foundation of China, Military Science Project(2022-SKJJ-C-037);Foundation for Military Postgraduates of China(JY2023A016)
激光武器具有作战成本低、转移火力快、杀伤可控等显著优势,被认为是目前反无人机(UAV)集群作战中最具技术可行性的定向能武器。随着激光武器逐步从试验验证进入作战运用阶段,对激光武器反无人机集群作战运用关键技术进行综述分析迫在眉睫。通过梳理激光武器毁伤作用机理及发展现状,分析激光武器反无人机集群作战运用关键问题,并总结归纳激光武器-集群目标分配技术、激光毁伤效能评估技术的研究进展,最后对激光武器反无人机集群作战运用关键技术研究方向进行展望,以期为激光武器尽早投入作战运用提供借鉴和参考。
关键词: 激光武器; 反无人机集群; 作战运用; 激光武器-集群目标分配技术; 激光毁伤效能评估技术
刘伟 , 张琳 , 王代强 , 孟宪良 , 张搏 . 激光武器反无人机集群作战运用及关键技术[J]. 航空学报, 2024 , 45(12) : 329457 -329457 . DOI: 10.7527/S1000-6893.2023.29457
Laser weapons have significant advantages such as low operation cost, fast transfer of firepower, and controllable killing, and are considered to be the most technically feasible directed energy weapons in anti-Unmanned Aerial Vehicle (UAV) swarm operations. With the research of laser weapons gradually entering the stage of operational application from experimental verification, it is needed to have a clear understanding of the research on key technologies of using laser weapons for anti-UAV swarm operations. By summarizing the damage mechanism and development status of laser weapons, the key issues of application of laser weapons in anti-UAV swarm operations are analyzed, and the current research progress of laser weapon-UAV swarm target assignment technology and damage efficiency assessment technology is summarized. Finally, the research direction of key technologies for the application of laser weapon in anti-UAV swarm operations is discussed to provide reference for the application of laser weapons as soon as possible.
1 | AMY H. The Looming Swarm[J/OL]. Air & Space Forces Magazine, (2019-05-22)[2023-08-17]. . |
2 | 罗磊, 谭碧涛. 舰载激光武器作战运用研究[J]. 激光与红外, 2022, 52(7): 1058-1063. |
LUO L, TAN B T. Research on operational application of shipborne laser weapon[J]. Laser & Infrared, 2022, 52(7): 1058-1063 (in Chinese). | |
3 | 禹明刚, 张东戈, 何明, 等. 激光武器反无人机蜂群作战的挑战及技术解决方案[C]∥2022年无人系统高峰论坛(USS2022)论文集. 北京: 北京海鹰科技情报研究所, 2022: 50-57. |
YU M G, ZHANG D G, HE M, et al. The challenge of laser weapon anti unmanned swarm warfare and its technical solutions[C]∥Proceedings of Unmanned Systems Summit 2022 (USS2022). Beijing: Beijing Seahawk Science and Technology Information Institute, 2022: 50-57. (in Chinese). | |
4 | AFFAN A S, MOHSIN M, ZUBAIR A S M. Survey and technological analysis of laser and its defense applications[J]. Defence Technology, 2021, 17(2): 583-592. |
5 | 黄沛, 曹国辉, 张海晶, 等. 美国陆军车载战术激光武器发展分析[J]. 激光技术, 2022, 46(6): 817-822. |
HUANG P, CAO G H, ZHANG H J, et al. Development analysis of US Army vehicle tactical laser weapons[J]. Laser Technology, 2022, 46(6): 817-822 (in Chinese). | |
6 | BERNATSKYI A, SOKOLOVSKYI M. History of military laser technology development in military applications[J]. History of Science and Technology, 2022, 12(1): 88-113. |
7 | 申鹏飞. 强激光辐照下多层复合材料损伤机理研究[D]. 上海: 东华大学, 2022: 1-8. |
SHEN P F. Study on the damage mechanism of multilayer composites under high-energy laser irradiation[D]. Shanghai: Donghua University, 2022: 1-8. (in Chinese) | |
8 | LIGABO I A, MOTA D S R H, DE A F C C, et al. Pulsed laser damage threshold evaluation of a carbon fiber composite skin and its effects on internal substrates[J]. Optics & Laser Technology, 2021, 143: 107304. |
9 | JABCZY?SKI J K, GONTAR P. Impact of atmospheric turbulence on coherent beam combining for laser weapon systems[J]. Defence Technology, 2021, 17(4): 1160-1167. |
10 | 朱孟真, 陈霞, 刘旭, 等. 战术激光武器反无人机发展现状和关键技术分析[J]. 红外与激光工程, 2021, 50(7): 188-200. |
ZHU M Z, CHEN X, LIU X, et al. Situation and key technology of tactical laser anti-UAV[J]. Infrared and Laser Engineering, 2021, 50(7): 188-200 (in Chinese). | |
11 | BAHADUR P. Review on LASER and its application in diverse defence field[J]. Electronic, 2018,12(04):8-12. |
12 | KALISKY Y, KALISKY O. Applications and performance of high power lasers and in the battlefield[J]. Optical Materials, 2011, 34(2): 457-460. |
13 | 刘雷, 刘大卫, 王晓光, 等. 无人机集群与反无人机集群发展现状及展望[J]. 航空学报, 2022, 43(S1): 726908. |
LIU L, LIU D W, WANG X G, et al. Development status and outlook of UAV clusters and an-ti-UAV clusters [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 726908 (in Chinese). | |
14 | 柳强, 何明. 海上小型无人机集群的反制装备需求与应对之策研究[J]. 军事运筹与系统工程, 2019, 33(4): 59-65. |
LIU Q, HE M. Research on countermeasures equipment demand and coping strategies for maritime small UAV swarm[J]. Military Operations Research and Systems Engineering, 2019, 33(4): 59-65 (in Chinese). | |
15 | 宋乃秋, 张昊春, 马超, 等. 高能激光武器毁伤机理多物理场建模[J]. 化工学报, 2016, 67(S1): 359-365. |
SONG N Q, ZHANG H C, MA C, et al. Multiple physical modeling for damage mechanism of high energy laser weapon[J]. CIESC Journal, 2016, 67(S1): 359-365 (in Chinese). | |
16 | KAUSHAL H, KADDOUM G. Applications of lasers for tactical military operations[J]. IEEE Access, 2017, 5: 20736-20753. |
17 | DAVID H T. Military laser technology and systems[M]. London: Artech House Publishers, 2015: 237-250. |
18 | LYUBOMIR L, EDMUNDS T, RISHAM G. Applications of laser technology in the army[J]. Journal of Defense Management, 2021, 11: 1-8. |
19 | EXTANCE A. Military technology: Laser weapons get real[J]. Nature, 2015, 521: 408-410. |
20 | LYU C Y, ZHAN R J. Global analysis of active defense technologies for unmanned aerial vehicle[J]. IEEE Aerospace and Electronic Systems Magazine, 2022, 37(1): 6-31. |
21 | 周末, 孙海文, 王亮, 等. 国外反无人机蜂群作战研究[J]. 指挥控制与仿真, 2023, 45(2): 24-30. |
ZHOU M, SUN H W, WANG L, et al. Research on foreign anti-UAV swarm warfare[J]. Command Control & Simulation, 2023, 45(2): 24-30 (in Chinese). | |
22 | STAFF. Russia claims its Zadira laser weapon destroyed a drone in Ukraine[EB/OL]. (2022-05-19)[2023-08-17]. . |
23 | 伍尚慧, 李晓东. 2021年新概念武器装备技术发展综述[J]. 中国电子科学研究院学报, 2022, 17(4): 362-367. |
WU S H, LI X D. Overview of the field of new concept weapons in 2021[J]. Journal of China Academy of Electronics and Information Technology, 2022, 17(4): 362-367 (in Chinese). | |
24 | 王泽坤. 反无人机指控系统的设计与仿真评估研究[D]. 西安: 西安电子科技大学, 2021: 1-6. |
WANG Z K. Design and simulation evaluation of anti-UAV command system[D].Xi’an: Xidian University, 2021: 1-6 (in Chinese). | |
25 | TADEUSZ Z. Factors determining a drone swarm employment in military operations[J]. Safety & Defense, 2021, 7(1): 59-71. |
26 | 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4): 023732. |
WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms: Review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 023732 (in Chinese). | |
27 | 付鑫, 赵然, 梁延峰, 等. 反无人机蜂群技术发展综述[J]. 中国电子科学研究院学报, 2022, 17(5): 421-428. |
FU X, ZHAO R, LIANG Y F, et al. Review on the development of anti UAV bee colony technology[J]. Journal of China Academy of Electronics and Information Technology, 2022, 17(5): 421-428 (in Chinese). | |
28 | SARANOVIC D, PAVLOVSKI M, POWER W, et al. Interception of automated adversarial drone swarms in partially observed environments[J]. Integrated Computer-Aided Engineering, 2021, 28(4): 335-348. |
29 | YAN J D, XIE H B, ZHUANG D Y. The adaptability of countermeasures against UAV swarms in typical mission scenarios[C]∥International Conference on Autonomous Unmanned Systems. Singapore: Springer Singapore, 2022: 2436-2447. |
30 | DAVID F, HOLGER N, GARIK M, et al. Counter-unmanned aerial vehicle systems[M]. Hoboken: John Wiley & Sons, Ltd, 2022: 122-148. |
31 | 周新人, 卢盈齐, 刘学亮, 等. 国外定向能防空武器抗击无人机蜂群研究现状分析及思考[J]. 飞航导弹, 2021(7): 91-95. |
ZHOU X R, LU Y Q, LIU X L, et al. Analysis and consideration of research status of directed energy air defense weapon against UAV swarm abroad[J]. Aerodynamic Missile Journal, 2021(7): 91-95 (in Chinese). | |
32 | US Navy takes delivery of tactical Lockheed Martin laser weapon[EB/OL]. (2022-08-21)[2023-08-17]. . |
33 | 季军亮, 温玉涛, 罗婷婷, 等. 陆基激光防空武器的特点及应对目标分析[J]. 现代防御技术, 2020, 48(3): 44-48, 112. |
JI J L, WEN Y T, LUO T T, et al. Characteristic and targets of land-based laser air defense weapon[J]. Modern Defence Technology, 2020, 48(3): 44-48, 112 (in Chinese). | |
34 | 宋乃秋, 张昊春, 王丽, 等. 高能激光武器毁伤威力仿真建模[J]. 兵工学报, 2016, 37(S1): 146-151. |
SONG N Q, ZHANG H C, WANG L, et al. Damage Power Modeling and Simulation of High Ener-gy Laser Weapon[J]. Acta Armamentarii, 2016, 37(S1): 146-151 (in Chinese). | |
35 | YUN Q J, SONG B F, PEI Y. Modeling the impact of high energy laser weapon on the mission effectiveness of unmanned combat aerial vehicles[J]. IEEE Access, 2020, 8: 32246-32257. |
36 | 陈军燕, 廖龙文, 曾鹏. 美国地基反卫星激光武器发展分析[J]. 红外与激光工程, 2020, 49(S1): 42-47. |
CHEN J Y, LIAO L W, ZENG P. Development analysis of American anti-satellite ground-based laser weapon[J]. Infrared and Laser Engineering, 2020, 49(S1): 42-47 (in Chinese). | |
37 | 王海涛. 激光武器关键技术及典型作战模式分析[J]. 航空兵器, 2020, 27(2): 25-31. |
WANG H T. Analysis on the key technologies and typical battle mode of laser weapon[J]. Aero Weaponry, 2020, 27(2): 25-31 (in Chinese). | |
38 | 田春雨, 张猛山. 机载激光武器及其关键技术[J]. 科技导报, 2019, 37(4): 30-34. |
TIAN C Y, ZHANG M S. Airborne laser weapon and the key technology[J]. Science & Technology Review, 2019, 37(4): 30-34 (in Chinese). | |
39 | 石新新, 马长正, 宋学辉. 反无人机集群作战及关键技术研究[C]∥022年无人系统高峰论坛(USS2022)论文集. 北京: 北京海鹰科技情报研究所, 2022: 45-49. |
SHI X X, MA C Z, SONG X H. Research on anti-UAV cluster operation and key technologies [C]∥Proceedings of Unmanned Systems Summit 2022 (USS2022). Beijing: Beijing Seahawk Science and Technology Information Institute, 2022: 45-49. (in Chinese). | |
40 | TYURIN V, MARTYNIUK O, MIRNENKO V, et al. General approach to counter unmanned aerial vehicles[C]∥2019 IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD). Piscataway: IEEE Press, 2019: 75-78. |
41 | MANNE A S. A target-assignment problem[J]. Operations Research, 1958, 6(3): 346-351. |
42 | CAI H P, LIU J X, CHEN Y W, et al. Survey of the research on dynamic weapon-target assignment problem[J]. Journal of Systems Engineering and Electronics, 2006, 17(3): 559-565. |
43 | KLINE A, AHNER D, HILL R. The weapon-target assignment problem[J]. Computers and Operations Research, 2019, 105(C): 226-236. |
44 | 张骁雄, 葛冰峰, 姜江, 等. 面向能力需求的武器装备组合规划模型与算法[J]. 国防科技大学学报, 2017, 39(1): 102-108. |
ZHANG X X, GE B F, JIANG J, et al. Capability requirements oriented weapons portfolio planning model and algorithm[J]. Journal of National University of Defense Technology, 2017, 39(1): 102-108 (in Chinese). | |
45 | 李梦杰, 常雪凝, 石建迈, 等. 武器目标分配问题研究进展:模型、算法与应用[J]. 系统工程与电子技术, 2023, 45(4): 1049-1071. |
LI M J, CHANG X N, SHI J M, et al. Developments of weapon target assignment: Models, algorithms, and applications[J]. Systems Engineering and Electronics, 2023, 45(4): 1049-1071 (in Chinese). | |
46 | XU W Q, CHEN C, DING S X, et al. A bi-objective dynamic collaborative task assignment under uncertainty using modified MOEA/D with heuristic initialization[J]. Expert Systems with Applications, 2020, 140: 112844. |
47 | GUO D, LIANG Z X, JIANG P, et al. Weapon-target assignment for multi-to-multi interception with grouping constraint[J]. IEEE Access, 2019, 7: 34838-34849. |
48 | DAVIS M T, ROBBINS M J, LUNDAY B J. Approximate dynamic programming for missile defense interceptor fire control[J]. European Journal of Operational Research, 2017, 259(3): 873-886. |
49 | 杨荣军, 李长军. 粒子群算法在激光武器反无人机火力分配中的应用[J]. 指挥信息系统与技术, 2021, 12(5): 70-75, 81. |
YANG R J, LI C J. Application of particle swarm optimization in anti-UAV fire allocation of laser weapon[J]. Command Information System and Technology, 2021, 12(5): 70-75, 81 (in Chinese). | |
50 | 许瑞明. 无人机集群作战涌现机理及优化思路研究[J]. 军事运筹与系统工程, 2018, 32(2): 14-17. |
XU R M. A study on the emergence mechanism and optimization ideas of UAV swarm operations[J]. Military Operations Research and Systems Engineering, 2018, 32(2): 14-17 (in Chinese). | |
51 | CHANG T Q, KONG D P, HAO N, et al. Solving the dynamic weapon target assignment problem by an improved artificial bee colony algorithm with heuristic factor initialization[J]. Applied Soft Computing, 2018, 70: 845-863. |
52 | CHANG S C, JAMES R M, SHAW J J. Assignment algorithm for kinetic energy weapons in boost phase defence[C]∥26th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 1987: 1678-1683. |
53 | TAYLOR A B. Counter-unmanned aerial vehicles study: Shipboard laser weapon system engagement strategies for countering drone swarm threats in the maritime environment[D]. Monterey: Naval Postgraduate School, 2021:42-64. |
54 | 苑文楠, 贾彦翔, 吕鑫, 等. “低慢小” 目标多体制武器分配优化模型[J]. 电光与控制, 2022, 29(3): 1-5. |
YUAN W N, JIA Y X, LYU X, et al. An optimization model of multi-system weapon assignment for LSS targets[J]. Electronics Optics & Control, 2022, 29(3): 1-5 (in Chinese). | |
55 | 苑文楠, 贾彦翔, 侯师. 城市环境下低慢小目标动态火力分配模型[C]∥第九届中国指挥控制大会论文集. 北京: 中国指挥与控制学会, 2021: 268-274. |
YUAN W N, JIA Y X, HOU S. Dynamic fire assignment model of low slow small target in urban environment[C]∥Proceedings of the 9th China Command and Control Conference. Beijing: China Comman d and Control Society, 2021: 268-274 (in Chinese). | |
56 | 蒋佳锐, 徐国亮, 王团团. 一种基于改进r-NSGA-Ⅱ算法的联合防空问题算法[J]. 指挥控制与仿真, 2023, 45(1): 75-83. |
JIANG J R, XU G L, WANG T T. An algorithm for joint air defense problem based on improved r-NSGA-Ⅱ algorithm[J]. Command Control & Simulation, 2023, 45(1): 75-83 (in Chinese). | |
57 | SP L, HS W. Weapons allocation is NP-complete[C]∥1986 summer computer simulation conference. 1986: 1054-1058. |
58 | 黄亭飞, 程光权, 黄魁华, 等. 基于DQN的多类型拦截装备复合式反无人机任务分配方法[J]. 控制与决策, 2022, 37(1): 142-150. |
HUANG T F, CHENG G Q, HUANG K H, et al. Task assignment method of compound anti-drone based on DQN for multi type interception equipment[J]. Control and Decision, 2022, 37(1): 142-150 (in Chinese). | |
59 | 牛奔, 姜崃. 软硬杀伤武器协同反无人机策略优化方法[C]∥第十届中国指挥控制大会论文集(上册). 北京: 中国指挥与控制学会, 2022: 552-556. |
NIU B, JIANG L. Optimization of soft-hard killing weapon cooperative strategy in anti-UAV[C]∥Proceedings of the 10th China Command and Control Conference (Volume 1). Beijing: China Command and Control Society, 2022: 552-556 (in Chinese). | |
60 | XIN B, WANG Y P, CHEN J. An efficient marginal-return-based constructive heuristic to solve the sensor–weapon-target assignment problem[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(12): 2536-2547. |
61 | EDWARDS D. Simulated laser weapon system decision support to combat drone swarms with machine learning[D]. Monterey: Naval Postgraduate School, 2021: 23-47. |
62 | 黄亭飞. 基于复合拦截策略的小型无人机智能决策技术研究[D]. 长沙: 国防科技大学, 2021: 21-45. |
HUANG T F. Research on intelligent decision making technology of small UAV based on consistent interception strategy[D].Changsha: National University of Defense Technology, 2021: 21-45. (in Chinese) | |
63 | 秦长江, 黄亭飞, 黄金才. 改进遗传算法的反无人机作战火力分配优化[J]. 国防科技, 2022, 43(1): 85-92. |
QIN C J, HUANG T F, HUANG J C. Optimization of fire assignment in anti-UAV combat with improved genetic algorithm[J]. National Defense Technology, 2022, 43(1): 85-92 (in Chinese). | |
64 | SHOJAEIFARD A, AMROUDI A N, MANSOORI A, et al. Projection recurrent neural network model: A new strategy to solve weapon-target assignment problem[J]. Neural Processing Letters, 2019, 50(3): 3045-3057. |
65 | GONG H, ZHU S Y, XU K, et al. Weapon targets assignment for electro-optical system countermeasures based on multi-objective reinforcement learning[C]∥ 2022 China Automation Congress (CAC). Piscataway: IEEE Press, 2022: 6714-6719. |
66 | 宋贵宝, 刘镇毓, 刘铁, 等. 防空导弹拦截效果评估研究综述[J]. 兵器装备工程学报, 2021, 42(11): 7-14. |
SONG G B, LIU Z Y, LIU T, et al. Summary of research on effectiveness evaluation of ship-to-air missile interception[J]. Journal of Ordnance Equipment Engineering, 2021, 42(11): 7-14 (in Chinese). | |
67 | LIAO L W, XIE F Y, CHEN J Y. Analysis on technology of high-energy counter-UAVs laser weapon[C]∥ Proceedings of the 2020 4th International Conference on Vision, Image and Signal Processing. New York: ACM, 2020: 1-5. |
68 | 彭聪, 卢发兴, 邢昌风. 舰载激光武器毁伤评估仿真模型[J]. 激光与红外, 2017, 47(8): 1006-1012. |
PENG C, LU F X, XING C F. Damage assessment simulation model for shipborne high-energy laser weapon[J]. Laser & Infrared, 2017, 47(8): 1006-1012 (in Chinese). | |
69 | 王向民, 王军, 郭治. 连续波强激光武器的动态毁伤概率数学模型[J]. 火力与指挥控制, 2016, 41(2): 55-59. |
WANG X M, WANG J, GUO Z. Mathematical model for dynamic damage probability of the CW high-energy laser devices[J]. Fire Control & Command Control, 2016, 41(2): 55-59 (in Chinese). | |
70 | 王向民, 王军, 郭治. 连续波强激光武器动态毁伤概率的非毁检测法[J]. 火力与指挥控制, 2016, 41(5): 121-124, 129. |
WANG X M, WANG J, GUO Z. Test method for dynamic damage probability of the CW high-energy laser devices without damage[J]. Fire Control & Command Control, 2016, 41(5): 121-124, 129 (in Chinese). | |
71 | 徐东翔. 舰载激光武器毁伤能力的建模与仿真[J]. 系统仿真技术, 2021, 17(2): 94-97. |
XU D X. Modeling and simulation on damage ability of shipborne laser weapon[J]. System Simulation Technology, 2021, 17(2): 94-97 (in Chinese). | |
72 | 杨剑波, 宗思光, 陈利斐. 舰载激光武器对典型无人机蜂群目标毁伤距离研究[J]. 激光与红外, 2022, 52(5): 745-751. |
YANG J B, ZONG S G, CHEN L F. Research on destruction distance of shipborne laser weapon to typical UAV swarm target[J]. Laser & Infrared, 2022, 52(5): 745-751 (in Chinese). | |
73 | 贺宣, 周冰, 刘贺雄, 等. 激光压制干扰评估研究现状[J]. 激光与红外, 2019, 49(7): 787-793. |
HE X, ZHOU B, LIU H X, et al. Research status of laser suppression interference assessment[J]. Laser & Infrared, 2019, 49(7): 787-793 (in Chinese). | |
74 | BOGLER P L. Shafer-dempster reasoning with applications to multisensor target identification systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1987, 17(6): 968-977. |
75 | 吴玲, 卢俊霖, 许俊飞. 激光武器反无人机集群建模与效能评估[J]. 激光与红外, 2022, 52(6): 887-892. |
WU L, LU J L, XU J F. Modeling and effectiveness evaluation on UAV cluster interception using laser weapon systems[J]. Laser & Infrared, 2022, 52(6): 887-892 (in Chinese). | |
76 | TRAN H T, BALCHANOS M, DOMER?ANT J C, et al. A framework for the quantitative assessment of performance-based system resilience[J]. Reliability Engineering & System Safety, 2017, 158: 73-84. |
77 | 程聪聪. 面向任务的无人机集群韧性评估研究[D]. 长沙: 国防科技大学, 2020: 19-101. |
CHENG C C. Study on resilience evaluation for the Mission-oriented UAV swarm[D]. Changsha: National University of Defense Technology, 2020: 19-101. (in Chinese). | |
78 | ADAMEY E, O?UZ A E, ?ZGüNER ü. Collaborative multi-MSA multi-target tracking and surveillance: A divide & conquer method using region allocation trees[J]. Journal of Intelligent & Robotic Systems, 2017, 87(3): 471-485. |
79 | LI J, HAN Y. Optimal resource allocation for packet delay minimization in multi-layer UAV networks[J]. IEEE Communications Letters, 2017, 21(3): 580-583. |
/
〈 |
|
〉 |