碳氢燃料超燃冲压发动机热非平衡效应
收稿日期: 2023-08-01
修回日期: 2023-08-07
录用日期: 2023-09-05
网络出版日期: 2023-09-21
基金资助
高超声速冲压发动机技术重点实验室支持项目(WDZC6142703202201)
Effects of thermal nonequilibrium on hydrocarbon⁃fueled scramjets
Received date: 2023-08-01
Revised date: 2023-08-07
Accepted date: 2023-09-05
Online published: 2023-09-21
Supported by
Project of Science and Technology on Scramjet Laboratory(WDZC6142703202201)
高超声速流动往往伴随着热化学非平衡效应,而热化学非平衡效应会对高超声速推进系统内的流动、燃烧带来一系列影响。采用双温度热化学非平衡模型以及热力学平衡模型,对飞行条件为马赫数10、高度29 km的煤油燃料超燃冲压发动机进行数值模拟,研究了热非平衡效应对发动机流动、燃烧及性能的影响。结果表明:热非平衡效应可以通过改变斜激波角度进而影响发动机内的流场结构和掺混效率。尽管热非平衡态下燃烧室前部的平衡温度较高,可以促进凹腔上游的燃烧,但对于凹腔后部的燃烧,热非平衡效应降低了热释放率峰值及燃烧效率。喷管中的振动非平衡效应可影响推力。总的来说,热非平衡效应降低了马赫数10煤油燃料发动机的性能。
吴忧 , 陈兵 , 杨庆春 , 徐旭 . 碳氢燃料超燃冲压发动机热非平衡效应[J]. 航空学报, 2024 , 45(11) : 529399 -529399 . DOI: 10.7527/S1000-6893.2023.29399
Hypersonic flow is generally accompanied by the thermochemical non-equilibrium effect, which brings a series of effects on the flow and combustion in hypersonic propulsion systems. This paper gives a numerical investigation of the effects of thermal nonequilibrium on flow, combustion and engine performance by simulating the kerosene-fueled scramjet at the free-stream conditions of Mach number 10 and 29 km. The thermochemical nonequilibrium and thermal equilibrium models are employed in this study. The results show that the thermal non-equilibrium effect can change the flow field structure and mixing efficiency in the engine by increasing the angle of oblique shock wave. The equilibrium temperature at the front of the combustion chamber is higher in the thermal non-equilibrium state, which can promote the combustion upstream of the cavity. However, the effect of thermal non-equilibrium reduces the peak heat release rate and combustion efficiency downstream of the cavity. The vibrational non-equilibrium in the nozzle can affect the thrust. In general, thermal non-equilibrium effects can reduce the performance of kerosene-fueled scramjet at Mach number 10.
1 | URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50: 593-627. |
2 | 岳连捷, 张旭, 张启帆, 等. 高马赫数超燃冲压发动机技术研究进展[J]. 力学学报, 2022, 54(2): 263-288. |
YUE L J, ZHANG X, ZHANG Q F, et al. Research progress on high-Mach-number scramjet engine technologies[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 263-288 (in Chinese). | |
3 | GIORDANO D. Impact of the Born-Oppenheimer approximation on aerothermodynamics[J]. Journal of Thermophysics and Heat Transfer, 2007, 21(3): 647-657. |
4 | 李海燕. 高超声速高温气体流场的数值模拟[D]. 绵阳: 中国空气动力研究与发展中心, 2007: 20-22. |
LI H Y. Numerical simulation of hypersonic and high temperature gas flowfields[D].Mianyang: China Aerodynamics Research and Development Center, 2007: 20-22 (in Chinese). | |
5 | NAGNIBEDA E, KUSTOVA E. Non-equilibrium reacting gas flows: Kinetic theory of transport and relaxation processes[M]. Berlin, Heidelberg: Springer, 2009. |
6 | SCHMISSEUR J D. Hypersonics into the 21st century: A perspective on AFOSR-sponsored research in aerothermodynamics[J]. Progress in Aerospace Sciences, 2015, 72: 3-16. |
7 | FIéVET R, RAMAN V. Effect of vibrational nonequilibrium on isolator shock structure[J]. Journal of Propulsion and Power, 2018, 34(5): 1334-1344. |
8 | DAI C L, SUN B, ZHOU C S, et al. Numerical investigation of real-gas effect of inward-turning inlet at Mach 12[J]. Aerospace Science and Technology, 2021, 115: 106786. |
9 | 韩亦宇, 张若凌, 邢建文, 等. 热力学非平衡对超燃冲压发动机冷态流动影响研究[J]. 推进技术, 2022, 43(7): 210262. |
HAN Y Y, ZHANG R L, XING J W, et al. Effects of thermal nonequilibrium on cold flow in scramjets[J]. Journal of Propulsion Technology, 2022, 43(7): 210262 (in Chinese). | |
10 | KOO H, RAMAN V, VARGHESE P L. Direct numerical simulation of supersonic combustion with thermal nonequilibrium[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2145-2153. |
11 | FIéVET R, VOELKEL S, KOO H, et al. Effect of thermal nonequilibrium on ignition in scramjet combustors[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2901-2910. |
12 | AO Y, WU K, LU H B, et al. Combustion dynamics of high Mach number scramjet under different inflow thermal nonequilibrium conditions[J]. Acta Astronautica, 2023, 208: 281-295. |
13 | YAO W. Nonequilibrium effects in hypersonic combustion modeling[J]. Journal of Propulsion and Power, 2022, 38(4): 523-540. |
14 | YAO W, LIU H, ZHANG Z, et al. Effects of thermal/chemical nonequilibrium on a high-Mach ethylene-fueled scramjet[J]. Journal of Propulsion and Power, 2023, 39(4): 562-579. |
15 | ZIDANE A, HAOUI R, SELLAM M, et al. Numerical study of a nonequilibrium H2—O2 rocket nozzle flow[J]. International Journal of Hydrogen Energy, 2019, 44(8): 4361-4373. |
16 | LEE J H. Basic governing equations for the flight regimes of aeroassisted orbital transfer vehicles[C]∥ 19th Thermophysics Conference. Reston: AIAA, 1984: 1729. |
17 | SKREBKOV O V. Vibrational non-equilibrium in the hydrogen-oxygen reaction. Comparison with experiment[J]. Combustion Theory and Modelling, 2015, 19(2): 131-158. |
18 | MILLIKAN R C, WHITE D R. Systematics of vibrational relaxation[J]. The Journal of Chemical Physics, 1963, 39(12): 3209-3213. |
19 | HALL J G. Fundamental phenomena in hypersonic flow[M]. Ithaca: Cornell University Press, 1966. |
20 | CANDLER G. Computation of thermo-chemical nonequilibrium Martian atmospheric entry flows[C]∥ 5th Joint Thermophysics and Heat Transfer Conference. Reston: AIAA, 1990: 1695. |
21 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
22 | WESTBROOK C K, DRYER F L. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames[J]. Combustion Science and Technology, 1981, 27(1-2): 31-43. |
23 | KNAB O, FRUEHAUF H H, MESSERSCHMID E W. Theory and validation of the physically consistent coupled vibration-chemistry-vibration model[J]. Journal of Thermophysics and Heat Transfer, 1995, 9(2): 219-226. |
24 | VOELKEL S, RAMAN V, VARGHESE P L. Effect of thermal nonequilibrium on reactions in hydrogen combustion[J]. Shock Waves, 2016, 26(5): 539-549. |
25 | WU Y, XU X, CHEN B, et al. Theoretical and numerical study of the binary scaling law for electron distribution in thermochemical non-equilibrium flows under extremely high Mach number[J]. Journal of Fluid Mechanics, 2022, 940: A3. |
26 | 吴忧, 徐旭, 陈兵, 等. 高马赫数下横/逆向喷流干扰流场数值研究[J]. 航空学报, 2021, 42(S1): 726359. |
WU Y, XU X, CHEN B, et al. Numerical study on transverse/opposing jet interaction flowfield under high Mach number[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726359 (in Chinese). | |
27 | KIM S D, LEE B J, LEE H J, et al. Robust HLLC riemann solver with weighted average flux scheme for strong shock[J]. Journal of Computational Physics, 2009, 228(20): 7634-7642. |
28 | PARK J S, YOON S H, KIM C. Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids[J]. Journal of Computational Physics, 2010, 229(3): 788-812. |
29 | VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions[C]∥31st Aerospace Sciences Meeting. Reston: AIAA, 1993: 880. |
30 | BLAZEK J. Computational fluid dynamics: Principles and applications[M]. 3rd ed. Oxford: Butterworth Heinemann, 2015. |
31 | LEHR H F.Experiments on shock-induced combustion[J].Astronautica Acta, 1972, 17(4):589-597. |
32 | DU P, XUE R, WU Y K, et al. Study on the flow field of a kerosene-fueled integrated inlet-combustor-nozzle oblique detonation engine[J]. Physics of Fluids, 2023, 35(6): 066127. |
33 | WANG Y Y, CHENG K L, TANG J F, et al. Analysis of the maximum flight Mach number of hydrocarbon-fueled scramjet engines under the flight cruising constraint and the combustor cooling requirement[J]. Aerospace Science and Technology, 2020, 98: 105594. |
34 | KUMARAN K, BEHERA P R, BABU V. Numerical investigation of the supersonic combustion of kerosene in a strut-based combustor[J]. Journal of Propulsion and Power, 2010, 26(5): 1084-1091. |
/
〈 |
|
〉 |