飞行器新概念气动布局设计专栏

目标气动特性下动力翼参数影响分析与优化

  • 孙蓬勃 ,
  • 周洲 ,
  • 李旭 ,
  • 王科雷
展开
  • 西北工业大学 航空学院,西安 710072
.E-mail: zhouzhou@nwpu.edu.cn

收稿日期: 2023-07-26

  修回日期: 2023-08-24

  录用日期: 2023-09-15

  网络出版日期: 2023-09-21

基金资助

陕西省自然科学基础研究计划(2022JQ-060);装备预研项目(50911040803)

Influence analysis and optimization of distribution-propulsion-wing parameters with target aerodynamic characteristics

  • Pengbo SUN ,
  • Zhou ZHOU ,
  • Xu LI ,
  • Kelei WANG
Expand
  • School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China

Received date: 2023-07-26

  Revised date: 2023-08-24

  Accepted date: 2023-09-15

  Online published: 2023-09-21

Supported by

Natural Science Foundation of Shaanxi Province(2022JQ-060);Equipment Pre-Research Project(50911040803)

摘要

基于一种以弦向环量分布为目标的分布式动力翼(DPW)二维反设计方法,对比分析了在保持升力和俯仰力矩不变的条件下,动力翼涵道壁弦长和弦向位置对设计结果的影响;进一步以壁面阻力、桨盘入流总压损失和速度分布畸变最小为目标,开展了分布式动力翼二维外形优化设计。结果表明,反设计示例结果的弦向环量分布与目标值的平均相对误差为0.058 7;在涵道壁参数影响分析中,将同一弦向总环量分布作为反设计目标以保持相同的设计升力和俯仰力矩,当固定涵道壁弦长并使其弦向位置前移,或当固定涵道壁后缘位置并使其弦长增加时,动力翼的壁面阻力降低,升力系数随迎角变化斜率升高,俯仰力矩随迎角变化斜率由负变正;在优化分析中,优化后的二维动力翼涵道壁位置前移,壁面阻力系数下降了160%,同时桨盘入流总压基本没有损失,速度分布均匀性则进一步提高。

本文引用格式

孙蓬勃 , 周洲 , 李旭 , 王科雷 . 目标气动特性下动力翼参数影响分析与优化[J]. 航空学报, 2024 , 45(6) : 629368 -629368 . DOI: 10.7527/S1000-6893.2023.29368

Abstract

The influence of chord length and position on the design results of the Distribution-Propulsion-Wing (DPW) is compared at the same target lift and pitching moment, based on a two-dimensional inverse design method of the DPW aiming at chordwise circulation distribution. Additionally, the two-dimensional shape optimization design of the DPW is conducted to achieve minimum drag, minimum total pressure loss and minimum velocity distribution distortion of the disk inlet. The results show that the average relative error between the distribution of the chordwise circulation and the target value is 0.058 7 in the inverse design test. In the analysis of the duct parameter influence, a fixed chord length of the upper duct wall and a forward chord position, or a fixed trail edge position of the duct wall and a longer chord length lead to a lower surface drag and a higher lift coefficient slope, while the pitch moment slope changes from negative to positive as the angle of attack changes. After the optimization, the position of the two-dimensional DPW duct wall moves forward, the drag coefficient decreases by 160%, the total pressure of the disk inflow basically does not lose, and the velocity distribution uniformity is further increased.

参考文献

1 REEL J L, BALTADJIEV N D. Using computational fluid dynamics to generate complex aerodynamic database for VTOL aircraft[C]∥Proceedings of the 2018 Applied Aerodynamics Conference. Reston: AIAA, 2018.
2 KIM H D, PERRY A T, ANSELL P J. A review of distributed electric propulsion concepts for air vehicle technology[C]∥2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway: IEEE Press, 2018: 1-21.
3 朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行器技术[J]. 航空学报202243(7): 025556.
  ZHU B J, YANG X X, ZONG J A, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica202243(7): 025556 (in Chinese).
4 KERHO M. Turboelectric distributed propulsion test bed aircraft: NASA LEARN Phase I Final report: NNX13AB9?2A[R]. El Segundo: Rolling Hills Research Corporation, 2013.
5 KERHO M. Turboelectric distributed propulsion test bed aircraft: NASA LEARN Phase Ⅱ Final report: NNX14AF44A[R]. El Segundo: Rolling Hills Research Corporation, 2015.
6 SCHILTGEN B, GREEN M, HALL D, et al. Split-wing propulsor design and analysis for electric distributed propulsion[C]∥Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
7 PAPATHAKIS V H. Inlet shape considerations for split-wing electric distributed propulsion[D]. San Luis Obispo: California Polytechnic State University, 2015: 20-63.
8 LAUER M G, ANSELL P J. A parametrization framework for multi-element airfoil systems using Bézier curves[C]∥Proceedings of the AIAA Aviation 2022 Forum. Reston: AIAA, 2022.
9 LAUER M G, ANSELL P J. Aerodynamic shape optimization of a transonic, propulsion-airframe-integrated airfoil system[C]∥Proceedings of the AIAA Aviation 2022 Forum. Reston: AIAA, 2022.
10 夏济宇, 周洲, 徐德, 等. 矢量电推进系统的气动-推进耦合模型[J]. 航空学报202344(11): 140-152.
  XIA J Y, ZHOU Z, XU D, et al. Aerodynamic/propulsion coupling model of vector electric propulsion system[J]. Acta Aeronautica et Astronautica Sinica202344(11): 140-152 (in Chinese).
11 GUO J H, ZHOU Z. Multi-objective design of a distributed ducted fan system[J]. Aerospace20229(3): 165.
12 王科雷, 周洲, 郭佳豪, 等. 分布式动力翼前飞状态动力/气动耦合特性分析[J]. 航空学报202445(5): 128643.
  WANG K L, ZHOU Z, GUO J H, et al. Analysis on the propulsive/aerodynamic coupled characteristics of the distributed-propulsion-wing during forward flight[J]. Acta Aeronautica et Astronautica Sinica202445(5): 128643 (in Chinese).
13 张星雨, 高正红, 雷涛, 等. 分布式电推进飞机气动-推进耦合特性地面试验[J]. 航空学报202243(8): 125389.
  ZHANG X Y, GAO Z H, LEI T, et al. Ground test on aerodynamic-propulsion coupling characteristics of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica202243(8): 125389 (in Chinese).
14 KIM H J, RHO O H. Aerodynamic design of transonic wings using the target pressure optimization approach[J]. Journal of Aircraft199835(5): 671-677.
15 ANDERSON J D. 空气动力学基础[M]. 5版. 杨永, 宋文萍, 张正科, 等, 译. 北京: 航空工业出版社, 2014: 319-338.
  ANDERSON J D. Fundamentals of aerodynamics [M]. 5th ed. YANG Y, SONG W P, ZHANG Z K, et al, translated. Beijing: Aviation Industry Press, 2014: 319-338 (in Chinese).
16 KATZ J, PLOTKIN A. Low-speed aerodynamics[M]. Cambridge: Cambridge University Press, 2010:76-79, 284-288.
17 李旭, 周洲, 郭佳豪, 等. 二维射流中翼型气动特性计算与分析[J]. 西北工业大学学报202240(2): 243-252.
  LI X, ZHOU Z, GUO J H, et al. Calculation and analysis of aerodynamic characteristics for airfoils immersed in two-dimensional jet flow[J]. Journal of Northwestern Polytechnical University202240(2): 243-252 (in Chinese).
18 SHOLLENBERGER C A. Analysis of the interaction of jets and airfoils in two dimensions[J]. Journal of Aircraft197310(5): 267-273.
19 SHOLLENBERGER C A. An investigation of a two-dimensional propulsive lifting system: NASA- CR-2250 [R]. Washington, D.C.: NASA, 1973.
20 KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft200845(1): 142-158.
21 LANE K, MARSHALL D. Inverse airfoil design utilizing CST parameterization[C]∥Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
22 GRUNWALD K J, GOODSON K W. Aerodynamic loads on an isolated shrouded-propeller configuration for angles of attack from-10 to 110: NASA TECHNICAL NOTE D-995[R]. Langley: NASA, 1962.
23 WU M M, HAN Z H, NIE H, et al. A transition prediction method for flow over airfoils based on high-order dynamic mode decomposition[J]. Chinese Journal of Aeronautics201932(11): 2408-2421.
24 MALONE J B, NARRAMORE J C, SANKAR L N. Airfoil design method using the Navier-Stokes equations[J]. Journal of Aircraft199128(3): 216-224.
25 张乐. 飞翼布局耦合进排气的气动与隐身综合设计研究[D]. 西安: 西北工业大学, 2016: 89-90.
  ZHANG L. Research on integrated design of aerodynamic and stealthy performance with intake and exhaust for flying-wing layout[D]. Xi’an: Northwestern Polytechnical University, 2016: 89-90 (in Chinese).
文章导航

/