专栏

集成先验的低复杂度Nyström-MUSIC方法

  • 刘秋雨 ,
  • 蒋彦雯 ,
  • 范红旗 ,
  • 连红飞
展开
  • 1.国防科技大学 自动目标识别全国重点实验室,长沙  410073
    2.国防科技大学 电子科学学院,长沙  410073

收稿日期: 2023-06-27

  修回日期: 2023-07-19

  录用日期: 2023-09-13

  网络出版日期: 2023-09-21

基金资助

国家重点研发计划(2022YFB3902400)

Low-complexity Nyström-MUSIC method based on prior information

  • Qiuyu LIU ,
  • Yanwen JIANG ,
  • Hongqi FAN ,
  • Hongfei LIAN
Expand
  • 1.National Key Laboratory of Automatic Target Recognition,National University of Defense Technology,Changsha  410073,China
    2.College of Electronic Science and Technology,National University of Defense Technology,Changsha  410073,China

Received date: 2023-06-27

  Revised date: 2023-07-19

  Accepted date: 2023-09-13

  Online published: 2023-09-21

Supported by

National Key Research and Development Program(2022YFB3902400)

摘要

传统多重信号分类(MUSIC)方法具有较高的角度分辨率和估计精度,但其子空间分解和谱峰搜索的计算复杂度较高、实时性较差,在阵列雷达系统的实际应用中受到了极大限制。为解决算力有限时阵列雷达角度估计性能受限的难题,提出了集成先验的Nyström-MUSIC方法,先后通过Nyström近似降低协方差矩阵维度和先验角度信息缩小谱峰搜索范围,分别减小了子空间分解的矩阵规模和谱峰搜索次数,有效降低了MUSIC方法的计算复杂度。仿真表明:集成先验的Nyström-MUSIC方法在具备与传统MUSIC方法相当的分辨性能和估计精度的条件下,将算法复杂度降低了8倍,运行时长减少80%以上,实现了对目标方位的快速高精度估计。

本文引用格式

刘秋雨 , 蒋彦雯 , 范红旗 , 连红飞 . 集成先验的低复杂度Nyström-MUSIC方法[J]. 航空学报, 2023 , 44(22) : 629226 -629226 . DOI: 10.7527/S1000-6893.2023.29226

Abstract

The traditional Multiple Signal Classification (MUSIC) method has high angle resolution and estimation accuracy, but the high computation complexity and poor real-timeliness involved in using the method for subspace decomposition and spectral peak search greatly limit its practical application in array radar systems. To address the problem that the angle estimation performance of array radar is limited when the computing power is limited, a low-complexity Nyström-MUSIC method based on prior information is proposed. The Nyström approximation is successively exploited to decrease the dimension of the covariance matrix and the prior angle information to determine the spectral peak search in a small area. The matrix size of the subspace decomposition and the time of spectral search are reduced, and finally the computation complexity of MUSIC method is effectively reduced. Simulation results illustrate that compared with the traditional MUSIC method, the low-complexity Nyström-MUSIC method based on prior information reduces the computation complexity by 8 times and cuts the running time by more than 80% under the condition of comparable resolution performance and estimation accuracy. It is verified that the method proposed can realize fast and high-precision estimation of the target azimuth.

参考文献

1 JIANG Y W, QIN Y L, WANG H Q, et al. A side-lobe suppression method based on coherence factor for terahertz array imaging[J]. IEEE Access20186: 5584-5588.
2 连红飞, 蒋彦雯, 范红旗. 汽车雷达多域联合调制波形[J/OL]. 系统工程与电子技术,(2022-11-08)[2023-06-18]..
  LIAN H F, JIANG Y W, FAN H Q. Multi domainjoint modulation waveform for automotive radar[J/OL]. Systems Engineering and Electronics,(2022-11-08)[2023-06-18]..
3 SHI J P, WEN F Q, LIU T P. Nested MIMO radar: Coarrays, tensor modeling, and angle estimation[J]. IEEE Transactions on Aerospace and Electronic Systems202157(1): 573-585.
4 黄倩兰, 蔡飞, 范红旗, 等. 密集假信号存在下单脉冲雷达未分辨目标DOA估计[J]. 系统工程与电子技术202345(9): 2727-2734.
  HUANG Q L, CAI F, FAN H Q, et al. DOA estimation of unresolved targets in the presense of dense false signals with monopulse radar[J]. Systems Engineering and Electronics202345(9): 2727-2734 (in Chinese).
5 SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation198634(3): 276-280.
6 TANG B, TANG J, ZHANG Y, et al. Maximum likelihood estimation of DOD and DOA for bistatic MIMO radar[J]. Signal Processing201393(5): 1349-1357.
7 VIBERG M, OTTERSTEN B. Sensor array processing based on subspace fitting[J]. IEEE Transactions on Signal Processing199139(5): 1110-1121.
8 QIAN C. A simple modification of ESPRIT[J]. IEEE Signal Processing Letters201825(8): 1256-1260.
9 DAKULAGI V. A new approach to achieve a trade-off between direction-of-arrival estimation performance and computational complexity[J]. IEEE Communications Letters202125(4): 1183-1186.
10 KIM B S, JIN Y, LEE J, et al. Low-complexity MUSIC-based direction-of-arrival detection algorithm for frequency-modulated continuous-wave vital radar[J]. Sensors202020(15): 4295.
11 闫锋刚, 沈毅, 刘帅, 等. 高效超分辨波达方向估计算法综述[J]. 系统工程与电子技术201537(7): 1465-1475.
  YAN F G, SHEN Y, LIU S, et al. Overview of efficient algorithms for super-resolution DOA estimates[J]. Systems Engineering and Electronics201537(7): 1465-1475 (in Chinese).
12 LIN Y C, LEE T S. Max-MUSIC: A low-complexity high-resolution direction finding method for sparse MIMO radars[J]. IEEE Sensors Journal202020(24): 14914-14923.
13 XU G H, KAILATH T. Fast subspace decomposition[J]. IEEE Transactions on Signal Processing199442(3): 539-551.
14 LI B, WANG S S, ZHANG J, et al. Ultra-fast accurate AoA estimation via automotive massive-MIMO radar[J]. IEEE Transactions on Vehicular Technology202271(2): 1172-1186.
15 XIN J M, SANO A. Computationally efficient subspace-based method for direction-of-arrival estimation without eigendecomposition[J]. IEEE Transactions on Signal Processing200452(4): 876-893.
16 MENG X T, XUE J H, YAN F G, et al. Real-valued propagator method for fast DOA estimation via polynomial rooting[J]. The Journal of Engineering2019, 2019(21): 7792-7795.
17 ROY R, KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing198937(7): 984-995.
18 佘黎煌, 刘平凡, 张石, 等. 一种高精度低复杂度的改进Root-MUSIC算法[J]. 东北大学学报(自然科学版)202243(4): 457-462, 469.
  SHE L H, LIU P F, ZHANG S, et al. An improved root-MUSIC algorithm with high precision and low complexity[J]. Journal of Northeastern University (Natural Science)202243(4): 457-462, 469 (in Chinese).
19 YAN F G, JIN M, QIAO X L. Low-complexity DOA estimation based on compressed MUSIC and its performance analysis[J]. IEEE Transactions on Signal Processing201361(8): 1915-1930.
20 WILLIAMS C K I, SEEGER M. Using the Nystr?m method to speed up kernel machines[C]∥ Proceedings of the 13th International Conference on Neural Information Processing Systems. New York: ACM, 2000: 661-667.
21 陈林秀, 杨翔宇, 张航, 等. 基于主动雷达/红外信息融合的复合制导方法[J]. 航空学报202243(S1): 727058.
  CHEN L X, YANG X Y, ZHANG H, et al. Composite guidance technology based on active radar/infrared information fusion[J]. Acta Aeronautica et Astronautica Sinica202243(S1): 727058 (in Chinese).
22 张哲璇, 龙腾, 徐广通, 等. 重访机制驱动的多无人机协同动目标搜索方法[J]. 航空学报202041(5): 323314.
  ZHANG Z X, LONG T, XU G T, et al. Revisit mechanism driven multi-UAV cooperative search planning method for moving targets[J]. Acta Aeronautica et Astronautica Sinica202041(5): 323314 (in Chinese).
23 GAO F, CAI Y Y, DENG F, et al. Prior area searching for energy-based sound source localization[J]. Science China Information Sciences202265(12): 1-12.
24 NYSTR?M E J. über die praktische aufl?sung von integralgleichungen mit anwendungen auf randwertaufgaben[J]. Acta Mathematica193054: 185-204.
25 LIN M, WANG F, ZHANG C S. Large-scale eigenvector approximation via Hilbert space embedding nystr?m[J]. Pattern Recognition201548(5): 1904-1912.
26 XU G H, CHO Y, KAILATH T. Application of fast subspace decomposition to signal processing and communication problems[J]. IEEE Transactions on Signal Processing199442(6): 1453-1461.
27 ZHANG Y, NG B P. MUSIC-like DOA estimation without estimating the number of sources[J]. IEEE Transactions on Signal Processing201058(3): 1668-1676.
文章导航

/