高超声速强预冷发动机热力循环研究进展(跨域飞行器关键技术专刊)

  • 王一帆 ,
  • 邹正平 ,
  • 陈懋章
展开
  • 1. 北京航空航天大学航空发动机研究院
    2. 北京航空航天大学
    3. 北京航空航天大学,能源与动力工程学院

收稿日期: 2023-07-19

  修回日期: 2023-09-11

  网络出版日期: 2023-09-13

基金资助

航空发动机气动热力国防科技重点实验室基金

Progress in research of thermodynamic cycle of hypersonic precooled engine

  • WANG Yi-Fan ,
  • ZOU Zheng-Ping ,
  • CHEN Mao-Zhang
Expand

Received date: 2023-07-19

  Revised date: 2023-09-11

  Online published: 2023-09-13

摘要

先进动力系统是水平起降、可重复使用高超声速飞行器的核心支撑,其中,高超声速强预冷发动机是一种极具潜力的动力方案,近年来受到广泛关注。深入研究强预冷发动机的热力循环,掌握发动机热力循环工作特性对发动机的方案设计至关重要。本文对近年来国内外在高超声速强预冷发动机热力循环方面的研究进展进行了综述,主要包括发动机热力循环建模分析方法、性能分析手段、典型强预冷发动机热力循环方案研究等。其中,基于热力循环方案的显著区别分别介绍了开式直接预冷循环及中间介质闭式预冷热力循环。已有研究表明,对于开式直接预冷循环,燃料类型是决定其性能的根本,提升燃料的热沉是提升发动机性能的重要途径。对于中间介质闭式预冷热力循环,发动机的比冲、单位推力等性能与闭式循环系统的复杂性存在一定的矛盾。整体来看,需继续开展高超声速强预冷发动机核心部件的研究,提炼更加准确的部件性能模型,完善部件尺寸、重量等估算模型,实现对于发动机比冲、单位推力、推重比等整机性能参数的准确评估,支撑高可行性的高超声速强预冷发动机热力方案设计。

本文引用格式

王一帆 , 邹正平 , 陈懋章 . 高超声速强预冷发动机热力循环研究进展(跨域飞行器关键技术专刊)[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/1000-6893.2023.29343

Abstract

The advanced propulsion system serves as the fundamental support for the horizontal takeoff and landing reusable hypersonic vehicle. Among the various power schemes, the hypersonic precooled engine has garnered significant attention in recent years due to its high potential. Therefore, it is crucial to conduct an in-depth investigation into the thermodynamic cycle of precooled engine and acquire a deep understanding of its working characteristics. This paper provides a comprehensive review of the domestic and overseas progress of hypersonic precooled engine thermodynamic cycle. The review encompasses various aspects, such as the modeling and analysis methods em-ployed for engine thermodynamic cycle, the performance analysis methods and the typical thermodynamic cycle schemes of precooled engines. The direct precooled cycle and the indirect precooled cycle with intermediate medi-um are introduced respectively due to these marked differences. The research has shown that fuel type is the fun-damental factor to determine the performance of direct precooled engine cycle, as well as improving the heat sink of fuel is an important way to improve the performance of engine. As for the indirect precooled engine with closed cy-cle, there are some contradictions between the specific impulse, thrust of engine and the complexity of closed cycle. On the whole, it is necessary to further study on the key components of hypersonic precooled engine, refine more accurate component performance models, improve component size, weight and other estimation models, in order to achieve accurate evaluation of engine specific impulse, thrust, thrust-to-weight ratio and other overall performance parameters, and then support the highly feasible thermodynamic scheme design of hypersonic precooled engine.

参考文献

[1]张灿, 王秩鹏, 叶蕾.国外近十年高超声速飞行器技术发展综述[J]. 战术导弹技术, 2020, 06: 81-86.[J].战术导弹技术, 2020, 06(06):81-86 [2]廖孟豪, 李宪开, 窦相民.美国高超声速作战飞机气动布局演化分析[J].航空科学技术, 2020, 31(11):3-6 [3]凌文辉, 侯金丽, 韦宝禧, 等.空天组合动力技术挑战及解决途径的思考[J].推进技术, 2018, 39(10):2171-2176 [4]王振国, 梁剑寒, 丁猛, 等.高超声速飞行器动力系统研究进展[J]. 力学进展, 2009 (6): 716-739.[J].力学进展, 2009, 39(06):716-739 [5]张升升, 郑雄, 吕雅, 等.国外组合循环动力技术研究进展[J].科技导报, 2020, 38(12):33-53 [6]邹正平, 刘火星, 唐海龙, 等.高超声速航空发动机强预冷技术研究[J].航空学报, 2015, 36(8):2544-2562 [7]JIAN D, QIURU Z.Key technologies for thermodynamic cycle of precooled engines: A review[J]. Acta Astronautica, 2020, 177:299-312.[J].Acta Astronautica, 2020, 17:299-312 [8]MEHTA U, BOWLES J, MELTON J.Water injection pre-compressor cooling assist space access[R]. AIAA-2012-5922. [9]芮长胜, 张超, 越冬峰.射流预冷涡轮发动机技术研究及发展[J].航空科学技术, 2015, 26(10):53-59 [10]尚守堂, 田方超, 扈鹏飞.涡轮发动机射流预冷关键技术分析[J].航空科学技术, 2018, 29(1):01-03 [11]BUILDER C H.Liquid Air Jet Propulsion Engine and Method of Operating Same[P]. U.S. PATENTS: 3, 452, 541, 1961. [12]HEMPSELL M.HOTOL's Secret Engines Revealed[J].Spaceflight, 1993, 35(5):168-172 [13]BALEPIN V, CIPRIANO J, BERTHUS M.Combined Propulsion for SSTO Rocket-from Conceptual Study to Demonstrator of Deep Cooled Turbojet[C]. Space Plane and Hypersonic Systems and Technology Conference. 2013. [14]BALEPIN V.Rocket Engine[P]. U.S. Patent: US6769242B1, 2001-11-21. [15]TANATSUGU N, SATO T, BALEPIN V, et al.Development Study on ATREX Engine[J].Acta Astronautica, 1997, 41(12):851-862 [16]SATO T, TAGUCHI H, KOBAYASHI H, et al.Development Study of a Precooled Turbojet Engine[J].Acta Astronautica, 2010, 66(7-8):1169-1176 [17]TANATSUGU N, NARUO Y, ROKUTANDA I.Test Results of the Air Turbo Ramjet for a Future Space Plane[J].Acta Astronautica, 1994, 32(12):785-796 [18]KOJIMA T, KOBAYASHI H, TAGUCHI H, et al.Design Study of Hypersonic Components for Precooled Turbojet Engine[C]. 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2008 [19]SATO T, TAGUCHI H, KOBAYASHI H, et al.Development Study of a Precooled Turbojet Engine for Flight Demonstration[C]. Proceedings of the Korean Society of Propulsion Engineers Conference. 2008 [20]TAGUCHI H, HARADA K, KOBAYASHI H, et al.Mach 4 Wind Tunnel Experiment of Hypersonic Pre-cooled Turbojet Engine[C]. 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2014 [21]HEMPSELL M.Progress on the SKYLON and SABRE[C]. Proceedings of the International Astronautical Congress. 2013. [22]BARTHA J, WEBBER H.SABRE Technology Development[C]. 67th International Astronautical Congress. 2016. [23]STEELANT J.Sustained Hypersonic Flight in Europe: Technology Drivers for LAPCAT II[C]. 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. 2009. [24]VARVILL R, DURAN I, KIRK A, et al.Sabre Technology Development: Status and Update[C]. 8th European Conference for Aeronautics and Space Sciences(EUCASS). 2019. [25]CHEN Y, ZOU Z, LIU H, et al.Verification at Mach 4 heat conditions of an annular microtube-typed precooler for hypersonic precooled engines[J]. Applied Thermal Engineering, 2022, 201: 117742. [26]WANG C, ERI Q, WANG Y, et al.Multi-objective aerodynamic optimization of an axisymmetric variable-geometry inlet with a Mach 5 design point[J]. Aerospace Science and Technology, 2023, 136: 108189. [27]WANG C, ERI Q, WANG Y, et al.Flow and heat transfer characteristics of intake-precooler system for hypersonic precooled aero-engine[J]. Applied Thermal Engineering, 2023, 229: 120596. [28]WANG Y, LIN Y, ERI Q, et al.Flow and thrust characteristics of an expansion–deflection dual-bell nozzle[J]. Aerospace Science and Technology, 2022, 123: 107464. [29]BAI N, FAN W, ZHANG R.A mixing enhancement mechanism for a hydrogen transverse jet coupled with a shear layer for gas turbine combustion[J]. Physics of Fluids, 2023, 35(4). [30]玉选斐.预冷吸气式组合推进系统热力循环及控制规律研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. [31]WEBBER H, FEAST S, BOND A.Heat Exchanger Design in Combined Cycle Engines[J]. Journal of the British Interplanetary Society, 2009, 62: 122-130 [32]廉筱纯, 吴虎.航空发动机原理[M]. 西安: 西北工业大学出版社, 2005: 1-27. [33]YU X, WANG C, YU D.Thermodynamic assessment on performance extremes of the fuel indirect precooled cycle for hypersonic airbreathing propulsion[J].Energy, 2019, 186(Nov.1):115772- [34]VARVILL R, BOND A.A Comparison of Propulsion Concepts for SSTO Reusable Launchers[J].Journal of the British Interplanetary Society, 2003, 56(3-4):108-117 [35]BALLAND S, VILLACE V.F, STEELANT J. Thermal and Energy Management for Hypersonic Cruise Vehicles – Cycle Analysis[C]. 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2015. [36]ALEXIOU A.Introduction to Gas Turbine Modelling with PROOSIS-First Edition[M]. Spain: Empresarios Agrupados Internacional, 2011. [37]LEMMON E, HUBER M, MCLINDEN M.NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version 9.1[S]. Gaithersburg: NIST, 2013. [38]WANG H, YANG Z, LIU J, et al.Activating ABO3-type coating by additive for coke inhibition in supercritical thermal cracking of endothermic hydrocarbon fuel[J]. Fuel Processing Technology, 2020, 198: 106229. [39]董飞.十氢萘超临界裂解脱氢的研究[D]. 天津:天津大学, 2003. [40]ZHOU H, GAO X K, LIU P H, et al.Energy absorption and reaction mechanism for thermal pyrolysis of n-decane under supercritical pressure[J]. Applied Thermal Engineering, 2017, 112: 403-412. [41]HUBER M L.NIST Thermophysical Properties of Hydrocarbon Mixtures Database (SUPERSTRAPP) – Version 3.2[M]. The United States: National Institute of Standards and Technology: 2007. [42]KEE R J, RUPLEY F M, MEEKS E, et al.CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics[R]. Sandia National Lab. (SNL-CA), Livermore, CA (United States), 1996. [43]GOODWIN D G.Cantera c++ user’s guide[J]. California Institute of Technology, 2002, 32. [44]李宜敏, 张中钦, 张远君.固体火箭发动机原理[M]. 北京: 国防工业出版社, 1985: 69-75. [45]范作民, 傅巽权, 等.热力过程计算与燃气表[M]. 北京: 国防工业出版社, 1987: 125-134. [46]MCBRIDE B J.Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications[M]. Cleveland: NASA Lewis Research Center, 1996: 1-3 [47]黄晨.膨胀式空气涡轮冲压发动机部件匹配及性能优化研究[D]. 北京: 中国科学院大学, 2018. [48]邹正平, 王一帆, 姚李超, 等.超临界二氧化碳闭式布莱顿循环系统研究进展[J].北京航空航天大学学报, 2022, 48(9):1643-1677 [49]邹正平, 王一帆, 额日其太, 等.高超声速强预冷航空发动机技术研究进展[J].航空发动机, 2021, 047(004):8-21 [50]王一帆.高超声速预冷发动机数学模型及多构型热力循环性能研究[D]. 北京: 北京航空航天大学, 2022. [51]GAO J, HUANG Y.Modeling and Simulation of an Aero Turbojet Engine with Gasturb[C]. 2011 International Conference on Intelligence Science and Information Engineering. 2011 [52]XU P, ZOU Z, YAO L.A unified performance conversion method for similar compressors working with different gases based on polytropic analysis and deep-learning improvement[J]. Energy Conversion and Management, 2021, 247: 114747. [53]张建强.组合发动机预冷器微小管道内低温工质流动传热机理研究[D]. 长沙: 国防科技大学, 2018. [54]HOOPES K, SáNCHEZ D, CRESPI F.A New Method for Modelling Off-design Performance of SCO2 Heat Exchangers without Specifying Detailed Geometry[C]. Fifth Supercritical CO2 Power Cycles Symposium. 2016. [55]邹正平, 王一帆, 杜鹏程, 等.强预冷发动机新型热力循环布局及性能分析[J].火箭推进, 2021(006):047. [56]ZOU Z, WANG Y, DU P, et al.A novel simplified precooled airbreathing engine cycle: Thermodynamic performance and control law[J]. Energy Conversion and Management, 2022, 258: 115472. [57]GALLIMORE S J.Axial Flow Compressor Design[J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1999, 213(5):437-449 [58]CHURCHILL S W.Friction-factor Equation Spans All Fluid-flow Regimes[J].Chemical Engineering, 1977, 84(24):91-92 [59]LI H, ZOU Z, LIU Y.A Refined Design Method for Precoolers with Consideration of Multi-parameter Variations Based on Low-dimensional Analysis[J].Chinese Journal of Aeronautics, 2022, 35(3):329-344 [60]丁超.非燃气介质涡轮气动设计方法[D]. 北京: 北京航空航天大学, 2019. [61]ZOU Z, WANG Y, LI H, et al.Thermal-hydraulic characteristics of a PCHE with zigzag microchannel for hypersonic precooled aero-engines: an experimental study[J]. Experimental Heat Transfer, 2022: 1-22. [62]张国瑞.行星传动技术[M]. 上海: 上海交通大学出版社, 1989: 6-124. [63]FERNANDEZ V.V,PANIAGUA GNumerical model of a variable-combined-cycle engine for dual subsonic and supersonic cruise[J].Energies, 2013, 6(2):839-870 [64]YU X, WANG C, YU D.Precooler-design & engine-performance conjugated optimization for fuel direct precooled airbreathing propulsion[J]. Energy, 2019, 170: 546-556. [65]WEI X, JIN F, JI H, et al.Thermodynamic analysis of key parameters on the performance of air breathing pre-cooled engine[J]. Applied Thermal Engineering, 2022, 201: 117733. [66]MATTINGLY J D.Aircraft engine design[M]. Reston, Virginia: AIAA, 2002. [67]KOBAYASHI H, TAGUCHI H, KOJIMA T, et al.Performance analysis of Mach 5 hypersonic turbojet developed in JAXA[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. 2012: 5839. [68]VARVILL R.Heat exchanger development at Reaction Engines Ltd[J].Acta Astronautica, 2010, 66(9-10):1468-1474 [69]陈操斌, 刘国栋, 杜鹏程, 等.碳氢燃料直接预冷发动机性能方案对比研究[C]//第六届空天动力联合会议暨中国航天第三专业信息网第四十二届技术交流会暨 2021 航空发动机技术发展高层论坛论文集 (第三册). 2022. [70]LI Y, JIN B, ZHANG X, et al.Pyrolysis and heat sink of an endothermic hydrocarbon fuel EHF-851[J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105084. [71]ZHANG Q, LIU G, WANG L, et al.Controllable decomposition of methanol for active fuel cooling technology[J].Energy & Fuels, 2014, 28(7):4431-4439 [72]PAN X, XIONG Y, WANG C, et al.Performance analysis of precooled turbojet engine with a low-temperature endothermic fuel[J]. Energy, 2022, 248: 123582. [73]YU X, YU W, WANG C, et al.Thermodynamic analysis of the influential mechanism of fuel properties on the performance of an indirect precooled hypersonic airbreathing engine and vehicle[J]. Energy Conversion and Management, 2019, 196: 1138-1152. [74]WANG C, HUANG H, ZHANG J, et al.Analysis of energy cascade utilization in the chemically precooled engine cycle from a perspective of indirect combustion[J]. Fuel, 2023, 334: 126619. [75]AOKI T, ITO T.A Concept of LACE for SSTO Space Plane[C]. AIAA 3rd International Aerospace Planes Conference. 1991. [76]BOND A.Aerospace Propulsion[P]. U.S. PATENTS, 5, 101, 622, 1992. [77]BALEPIN V.High Speed Propulsion Cycles[J]. Advances on Propulsion Technology for High-Speed Aircraft. 2007 [78]BALEPIN V V, MAITA M, MURTHY S N B.Third way of development of single-stage-to-orbit propulsion[J].Journal of Propulsion and Power, 2000, 16(1):99-104 [79]SATO T, TANATSUGU N, HATTA H, et al.Development study of the ATREX engine for TSTO spaceplane[C]//10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. 2001: 1839. [80]ISOMURA K, OMI J.A comparative study of an ATREX engine and a turbo jet engine[C]//37th Joint propulsion Conference and Exhibit. 2001: 3239. [81]ISOMURA K, OMI J, TANATSUGU N, et al.A feasibility study of a new ATREX engine system of aft-turbine configuration[J].Acta Astronautica, 2002, 51(1-9):153-160 [82]郑佳琳.预冷发动机热力循环及调节规律研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [83]周倩楠.预冷ATREX发动机新型循环性能优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [84]罗佳茂, 杨顺华, 张建强, 等.甲烷预冷膨胀循环空气涡轮火箭发动机性能分析[J].推进技术, 2021, 42(9):1964-1975 [85]罗佳茂, 杨顺华, 母忠强, 等.预冷型组合循环发动机技术[J].空气动力学学报, 2022, 40(1):190-207 [86]张鑫, 陆阳, 李腾等.氨预冷膨胀循环空气涡轮火箭发动机性能分析[C]//中国力学学会, 中国科学院力学研究所, 中国科学院空天飞行科技中心.第十四届全国高超声速科技学术会议论文集. 2023: 2-10. [87]KOJIMA T, KOBAYASHI H, TAGUCHI H, et al.Design study of hypersonic components for precooled turbojet engine[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2008: 2504. [88]ZHAO W, HUANG C, ZHAO Q, et al.Performance analysis of a pre-cooled and fuel-rich pre-burned mixed-flow turbofan cycle for high speed vehicles[J]. Energy, 2018, 154: 96-109. [89]赵巍, 赵庆军, 徐建中.进气预冷富燃预燃混排涡扇发动机热力循环[J].工程热物理学报, 2017, 38(7):1557-1563 [90]WANG C, YU X, HA C, et al.Thermodynamic analysis for a novel chemical precooling turbojet engine based on a multi-stage precooling-compression cycle[J]. Energy, 2023, 262: 125352. [91]WANG C, FENG Y, LIU Z, et al.Assessment of thermodynamic performance and CO2 emission reduction for a supersonic precooled turbine engine cycle fueled with a new green fuel of ammonia[J]. Energy, 2022, 261: 125272. [92]WANG C, CHENG K, QIN J, et al.Performance comparison of three chemical precooled turbine engine cycles using methanol and n-decane as the precooling fuels[J]. Energy, 2022, 249: 123606. [93]WEBBER H, BOND A, HEMPSELL M.Sensitivity of pre-cooled air-breathing engine performance to heat exchanger design parameters[C]//57th International Astronautical Congress. 2006: D2. P. 2.07. [94]YU X, WANG C, YU D.Minimization of entropy generation of a closed Brayton cycle based precooling-compression system for advanced hypersonic airbreathing engine[J]. Energy Conversion and Management, 2020, 209: 112548. [95]FERNáNDEZ-VILLACé V, PANIAGUA G.On the exergetic effectiveness of combined-cycle engines for high speed propulsion[J]. Energy, 2013, 51: 382-394. [96]ZHANG J, WANG Z, LI Q.Thermodynamic efficiency analysis and cycle optimization of deeply precooled combined cycle engine in the air-breathing mode[J]. Acta Astronautica, 2017, 138: 394-406. [97]屈原, 徐旭, 杨庆春.?分析在协同吸气式火箭发动机中的应用[J]. 推进技术, 2019 (8): 1693-1701. [98]FERNáNDEZ V.V. Simulation, Design and Analysis of Air-breathing Combined-cycle Engines for High Speed Propulsion[D]. Belgium: Von Karman Institute for Fluid Dynamics, 2013. [99]DONG P, TANG H, CHEN M, et al.Overall performance design of paralleled heat release and compression system for hypersonic aeroengine[J]. Applied Energy, 2018, 220: 36-46. [100]YU X, WANG C, YU D.Configuration optimization of the tandem cooling-compression system for a novel precooled hypersonic airbreathing engine[J]. Energy Conversion and Management, 2019, 197: 111827. [101]BREVAULT L, BALESDENT M, WUILBERCQ R, et al.Conceptual design of a Two-Stage-To-Orbit vehicle using SABRE engines[C]//EUCASS 2019. 2019. [102]高远, 陈玉春, 王治华, 等.深冷组合循环发动机吸气模态循环分析与设计可行域研究[J].推进技术, 2020, 41(6):1217-1226 [103]陈操斌, 郑日恒, 马同玲, 等.带有闭式布雷顿循环的预冷发动机特性研究[J].推进技术, 2021, 42(8):1749-1760 [104]FEAST S.The Synergetic Air-Breathing Rocket Engine (SABRE) development status update[C]//Proceedings of the International Astronautical Congress. 2020. IAC-20-C4-7-1. [105]BOND A, VARVILL R.Combined Turbojet and Turboprop Engine[P]. PCT: WO2015/052472A1, 2015-04-16. [106]JIVRAJ F, BOND A, VARVILL R, et al.The scimitar precooled Mach 5 engine[J]. 2007. [107]VILLACE V F, PANIAGUA G.Simulation of a Variable-Combined Cycle Engine for Dual Subsonic and Supersonic Cruise[J]. AIAA 2011–6110, 2011. [108]TANBAY T, DURMAYAZ A.Energy,exergy and ecological analysis and multiobjective optimization of the hydrogen-fueled Scimitar engine with fixed nozzle geometry[J].International Journal of Hydrogen Energy, 2022, 47(45):19876-19887 [109]TANBAY T, UCA M B, DURMAYAZ A.Assessment of NOx emissions of the Scimitar engine at Mach 5 based on a thermodynamic cycle analysis[J].International Journal of Hydrogen Energy, 2020, 45(5):3632-3640 [110]TANBAY T, DURMAYAZ A.Exergy and NOx Emission-Based Ecological Performance Analysis of the Scimitar Engine[J].Journal of Engineering for Gas Turbines and Power, 2020, 142(8):081008- [111]张蒙正, 南向谊, 刘典多.预冷空气涡轮火箭组合动力系统原理与实现途径[J].火箭推进, 2016, 42(1):6-12 [112]朱岩, 马元, 张蒙正.预冷空气涡轮火箭发动机氦循环系统的参数特性[J].航空动力学报, 2018, 33(8):9- [113]张蒙正, 刘典多, 马海波, 等.发动机关键技术与性能提升途径初探[J].推进技术, 2018, 39(9):1921-1927 [114]FERNáNDEZ-VILLACé V, PANIAGUA G.Simulation of a combined cycle for high speed propulsion[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010: 1125. [115]ZHANG D, CHEN C, YU X.Control law synthetizing for an innovative indirect precooled airbreathing engine under off-design operation conditions[J]. Energy, 2023, 263: 126110. [116]高远, 陈玉春, 史新兴.深冷组合发动机吸气模态最大状态控制规律研究[J].推进技术, 2020, 41(12):2659-2669 [117]马文友, 张文胜, 马元, 等.基于控制规律的发动机典型工况点速度与高度特性分析[J].火箭推进, 2022, 48(6):35-43 [118]LONGSTAFF R, BOND A.The SKYLON project[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2011: 2244.
文章导航

/