流体力学与飞行力学

多段翼构型结冰计算方法及结冰影响分析

  • 任靖豪 ,
  • 王强 ,
  • 陈宁立 ,
  • 刘宇 ,
  • 易贤
展开
  • 1.中国空气动力研究与发展中心 低速空气动力研究所,绵阳 621000
    2.中国空气动力研究与发展中心 空气动力学国家重点实验室,绵阳 621000

收稿日期: 2023-07-17

  修回日期: 2023-08-08

  录用日期: 2023-08-28

  网络出版日期: 2023-09-13

基金资助

国家自然科学基金(12172372);国家重大科技专项(J2019-III-0010-0054)

Numerical simulation and aerodynamic performance effects of multi-element airfoil ice accretion

  • Jinghao REN ,
  • Qiang WANG ,
  • Ningli CHEN ,
  • Yu LIU ,
  • Xian YI
Expand
  • 1.Low Speed Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China
    2.State Key Laboratory of Aerodynamics,China Aerodynamics Research and Development Center,Mianyang 621000,China

Received date: 2023-07-17

  Revised date: 2023-08-08

  Accepted date: 2023-08-28

  Online published: 2023-09-13

Supported by

National Natural Science Foundation of China(12172372);National Key Research and Development Program of China(J2019-III-0010-0054)

摘要

为了揭示不同来流条件下多段翼构型表面结冰特性,针对30P30N增升构型开展了结冰数值模拟研究。在计算方法方面,通过引入最小壁面距离,实现了基于拉格朗日方法的高效液滴收集率计算。采用局部网格拓扑重构技术改善了复杂冰形下网格重构稳健性差的问题,实现了更加鲁棒的多时间步结冰过程自动化计算能力。基于上述算法,开展了结冰特性及带冰后气动特性模拟,计算结果显示,多段翼结冰区域主要分布在前缘缝翼迎风面、主翼段及襟翼下翼面。在上游部件尾迹的影响下,多段翼表面水滴收集特性呈现显著的动态分布特性。前缘缝翼表面形成的冰角结构及其缝道附近发生的积冰堵塞是导致多段翼构型气动性能退化的主要因素,相比之下襟翼表面结冰对气动特性的影响程度较小。

本文引用格式

任靖豪 , 王强 , 陈宁立 , 刘宇 , 易贤 . 多段翼构型结冰计算方法及结冰影响分析[J]. 航空学报, 2024 , 45(14) : 129328 -129328 . DOI: 10.7527/S1000-6893.2023.29328

Abstract

Icing simulation of a 30P30N multi-element airfoil is conducted to explore the aerodynamic characteristics influenced by ice shape on the multi-element airfoil under different inflow conditions. An improved multi-time step calculation method based on the Myers icing phase transition model is proposed. A robust and efficient Lagrangian water collection calculation is realized by introducing the minimum wall distance. The local mesh repair technique is applied to improve the robustness of mesh reconstruction under complex ice conditions. The calculation results show that the ice shape is distributed at the leading edge of the slat airfoil and the lower surface of the main element and the flap airfoil. The droplet collection on the multi-element airfoil surface has significant unsteady characteristics due to the influence of the upstream component wake. Ice accretion on the leading edge slat and ice blocking in the crack near the slat are the main factors leading to the aerodynamic performance degradation, while the ice on the flap surface has a smaller impact for the lift and drag efficiency.

参考文献

1 INGELMAN-SUNDBERG M, TRUNOV O K, IVANIKO A. Methods for prediction of the influence of ice on aircraft flying characteristics[R]. Swedish-Soviet Working Group on Flight Safety, 1977.
2 KHODADOUST A, DOMINIK C, SHIN J, et al. Effect of In-flight ice accretion on the performance of a multi-element airfoil[R]. Montreal: International Icing Symposium, 1995.
3 IULIANO E, BRANDI V, MINGIONE G, et al. Water impingement prediction on multi-element airfoils by means of eulerian and Lagrangian approach with viscous and inviscid air flow[C]∥ 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
4 YU C X, KE P, YU G F, et al. Investigation of water impingement on a multi-element high-lift airfoil by Lagrangian and Eulerian approach[J]. Propulsion and Power Research20154(3): 161-168.
5 任靖豪, 王强, 刘宇, 等. 大型商用运输机机翼增升构型水滴撞击特性计算[J]. 空气动力学学报202139(1): 52-58, 72.
  REN J H, WANG Q, LIU Y, et al. Numerical simulation of droplet impingement characteristics on a high-lift configuration of a large commercial transport aircraft[J]. Acta Aerodynamica Sinica202139(1): 52-58, 72 (in Chinese).
6 PETROSINO F, MINGIONE G, CAROZZA A, et al. Ice accretion model on multi-element airfoil[J]. Journal of Aircraft201148(6): 1913-1920.
7 ?ZGEN S, CAN?BEK M. Ice accretion simulation on multi-element airfoils using extended Messinger model[J]. Heat and Mass Transfer200945(3): 305-322.
8 SANG W M, LI F W, SHI Y Y. Icing effect study for wing/body and high-lift wing configurations[C]∥ 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
9 张恒, 李杰, 龚志斌. 多段翼型缝翼前缘结冰大迎角分离流动数值模拟[J]. 航空学报201738(2): 520746.
  ZHANG H, LI J, GONG Z B. Numerical simulation of separated flow around a multi-element airfoil at high angle of attack with iced slat[J]. Acta Aeronautica et Astronautica Sinica201738(2): 520746 (in Chinese).
10 李冬, 张辰, 王福新, 等. 多段翼型的大粒径过冷水滴结冰特征及气动影响分析[J]. 上海交通大学学报201751(8): 921-931.
  LI D, ZHANG C, WANG F X, et al. An investigation on the characteristics of supercooled large droplet icing accretions and aerodynamic effects on high-lift configuration[J]. Journal of Shanghai Jiao Tong University201751(8): 921-931 (in Chinese).
11 PRINCE RAJ L, LEE J W, MYONG R S. Ice accretion and aerodynamic effects on a multi-element airfoil under SLD icing conditions[J]. Aerospace Science and Technology201985: 320-333.
12 MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences195320(1): 29-42.
13 陈坚强, 吴晓军, 张健, 等. FlowStar: 国家数值风洞(NNW)工程非结构通用CFD软件[J]. 航空学报202142(9): 625739.
  CHEN J Q, WU X J, ZHANG J, et al. FlowStar: general unstructured-grid CFD software for National Numerical Windtunnel(NNW) Project[J]. Acta Aeronautica et Astronautica Sinica202142(9): 625739 (in Chinese).
14 OZCER I, SWITCHENKO D, BARUZZI G S, et al. Multi-shot icing simulations with automatic re-meshing[C]∥ International Conference on Icing of Aircraft, Engines, and Structures. Warrendale: SAE International, 2019: 2019-01-1956.
15 SHIN J, BOND T H. Experimental and computational ice shapes and resulting drag increase for a NACA 0012 airfoil[C]∥ 5th Symposium on Numerical and Physical Aspects of Aerodynamic Flows. Washington, D. C.: NACA, 1992:19920019431.
16 MYERS T G. Extension to the messinger model for aircraft icing[J]. AIAA Journal200139(2): 211-218.
17 MYERS T G, CHARPIN J P F, THOMPSON C P. Slowly accreting ice due to supercooled water impacting on a cold surface[J]. Physics of Fluids200214(1): 240-256.
18 HILL J M. One-dimensional stefan problems: an introduction[M]. London: Longman Scientific & Technical, 1987
19 MARUYAMA D, BAILLY D, CARRIER G. High-quality mesh deformation using quaternions for orthogonality preservation[J]. AIAA Journal201452(12): 2712-2729.
20 JIAO X M. Face offsetting: A unified approach for explicit moving interfaces[J]. Journal of Computational Physics2007220(2): 612-625.
21 PAPADAKIS M. Experimental investigation of water droplet impingement on airfoils, finite wings, and an S-duct engine inlet[R]. Washington, D. C.:NASA, 2002.
文章导航

/