结冰与防除冰

多尺寸水滴喷雾掺混增强效应

  • 徐晓刚 ,
  • 张扬 ,
  • 王天波 ,
  • 马旭东 ,
  • 陈刚
展开
  • 1.复杂服役环境重大装备结构强度与寿命全国重点实验室,西安 710049
    2.西安交通大学 航天航空学院,西安 710049
    3.航空工业西飞民用飞机有限责任公司,西安 710089
.E-mail: youngz@xjtu.edu.cn

收稿日期: 2023-06-05

  修回日期: 2023-06-30

  录用日期: 2023-09-01

  网络出版日期: 2023-09-13

基金资助

国家自然科学基金(11602199);复杂服役环境重大装备结构强度与寿命全国重点实验室项目

Mixing enhancement effect of multi-size water droplet spray

  • Xiaogang XU ,
  • Yang ZHANG ,
  • Tianbo WANG ,
  • Xudong MA ,
  • Gang CHEN
Expand
  • 1.State Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an  710049,China
    2.School of Aerospace Engineering,Xi’an Jiaotong University,Xi’an  710049,China
    3.AVIC XAC Commercial Aircraft Co. ,Ltd. ,Xi’an  710089,China
E-mail: youngz@xjtu.edu.cn

Received date: 2023-06-05

  Revised date: 2023-06-30

  Accepted date: 2023-09-01

  Online published: 2023-09-13

Supported by

National Natural Science Foundation of China(11602199);State Key Laboratory for Strength and Vibration of Mechanical Structures Project

摘要

为保障现代飞行器在结冰气象条件下的安全性,AC20-71A文件给出了适航条例符合性验证试验的具体方法,尤其冰风洞试验和人造冰云与真实结冰条件的一致性是当前研究的重点。为减弱不同粒径水滴空间分布差异带来的表面冰形特征变化,设计了一种诱使气流自旋并掺混离散不同尺寸水滴空间分布情况的旋涡发生器,采用离散随机运动模型(DRW)和水滴粒度分布函数Rosin-Rammler,研究水滴喷射角和旋涡发生器结构变化对水滴空间分布的影响,发现旋涡发生器产生的环形低压区能有效改善水滴轴线积聚现象,结合核密度分析方法,确定最佳的均匀化测试截面在距旋涡发生器10倍厚度400 mm处,15°偏转角和5°喷射角的掺混增强效应最强。

本文引用格式

徐晓刚 , 张扬 , 王天波 , 马旭东 , 陈刚 . 多尺寸水滴喷雾掺混增强效应[J]. 航空学报, 2023 , 44(S2) : 729130 -729130 . DOI: 10.7527/S1000-6893.2023.29130

Abstract

To ensure the safety of modern aircraft under icing meteorological conditions, document AC20-71A provides specific methods for compliance testing with airworthiness regulations, among which the consistency of ice wind tunnel tests and artificial ice cloud droplets with real icing conditions are the focus of current research. To attenuate the changes in surface ice shape characteristics caused by differences in the spatial distribution of water droplets of different particle sizes, we design a vortex generator to induce airflow spin and mix the spatial distribution of discrete water droplets of different sizes. A Discrete Random Walk (DRW) model and the Rosin-Rammler droplet size distribution function are used to investigate the effects of changes in the droplet jet angle and vortex generator structure on the spatial distribution of droplets. The annular low-pressure zone generated by the vortex generator is found to be effective in improving the droplet axial accumulation phenomenon. Combining the kernel density estimation method, we determine that the optimal homogenization test cross-section is about 400 mm, 10 times the thickness of the vortex generator, and the strongest doping enhancement effect to be achieved at a 15° deflection angle and a 5° jetting angle.

参考文献

1 CZERNKOVICH N. Understanding in-flight icing[C]∥Transport Canada Aviation Safety Seminar. 2004: 1-21.
2 IRVINE T, KEVDZIJA S, SHELDON D, et al. Overview of the icing and flow quality improvements program for the NASA-Glenn Icing Research Tunnel[C]∥Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001.
3 VECCHIONE L, DE MATTEIS P. An overview of the CIRA icing wind tunnel[C]∥Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
4 IRANI E, AL-KHALIL K. Calibration and recent upgrades to the Cox icing wind tunnel[C]∥Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
5 WONG S C, TAN S, PAPADAKIS M. Spray rig design for airborne icing tankers[C]∥Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
6 FLEMMING R, ALLDRIDGE P, DOEPPNER R. Artificial icing tests of the S-92A helicopter in the McKinley climatic laboratory[C]∥Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004.
7 REASOR D Jr, LECHNIAK J, BHAMIDIPATI K, et al. Fluid-structure modeling and simulation of a modified KC-135 icing tanker boom[C]// Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
8 中国民用航空局 . 运输类飞机适航标准:CCAR-25-R4 [S]. 北京:中国民用航空局,2016: 186-188.
  Civil Aviation Administration of China. Air-worthiness standards for transport aircraft: CCAR-25-R4 [S]. Beijing: Civil Aviation Administration of China, 2016: 186-188 (in Chinese).
9 Federal Aviation Administration. Airplane ice protection: AC-73A [S]. Washington, D.C.: Federal Aviation Administration, 2006.
10 闫鹏庆, 牛亚宏. 人工模拟结冰飞行试验技术研究[J]. 民用飞机设计与研究2018(1): 71-74.
  YAN P Q, NIU Y H. Research on artificial icing flight test technology[J]. Civil Aircraft Design & Research2018(1): 71-74 (in Chinese).
11 FLEMMING R, PAPADAKIS M, MURTY H, et al. The design, fabrication, and testing of simulated ice shapes for the S-92A helicopter[C]∥Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004.
12 SAE. Airborne icing tankers: ARP-5904[R]. Warrendale: SAE International, 2007.
13 郭向东, 张平涛, 赵照, 等. 大型结冰风洞云雾场适航应用符合性验证[J]. 航空学报202041(10): 123879.
  GUO X D, ZHANG P T, ZHAO Z, et al. Airworthiness application compliance verification of cloud flowfield in large icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica202041(10): 123879 (in Chinese).
14 郭向东, 柳庆林, 赖庆仁, 等. 大型结冰风洞气流场适航符合性验证[J]. 空气动力学学报202139(2): 184-195.
  GUO X D, LIU Q L, LAI Q R, et al. Airworthiness compliance verification of aerodynamic flowfield of a large-scale icing wind tunnel[J]. Acta Aerodynamica Sinica202139(2): 184-195 (in Chinese).
15 牛亚宏, 吕文杰. Y-8结冰喷水机改装设计与实现[J]. 飞行力学201735(3): 93-96.
  NIU Y H, LYU W J. Modification design and implementation of Y-8 airborne icing tanker[J]. Flight Dynamics201735(3): 93-96 (in Chinese).
16 牛亚宏, 闫鹏庆. 结冰喷水机设计准则研究[J]. 飞行力学201735(2): 72-75.
  NIU Y H, YAN P Q. Research on design criteria of airborne icing tanker[J]. Flight Dynamics201735(2): 72-75 (in Chinese).
17 POTAPCZUK M, MILLER D, IDE R, et al. Simulation of a Bi-modal large droplet icing cloud in the NASA icing research tunnel[C]∥Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
18 VAN ZANTE J, IDE R, STEEN L C. NASA Glenn icing research tunnel: 2012 cloud calibration procedure and results[C]∥Proceedings of the 4th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2012.
19 ESPOSITO B. Application of optical methods for icing wind tunnel cloud simulation extension to supercooled large droplets[C]∥ILASS Americas, 23rd Annual Conference on Liquid Atomization and Spray Systems, 2011.
20 ORCHARD D M, CLARK C, OLESKIW M. Development of a supercooled large droplet environment within the NRC altitude icing wind tunnel: 2015-01-2092[R]. Warrendale: SAE International, 2015.
21 李斯, 束珺, 张志强, 等. 冰风洞过冷大水滴云雾水滴质量分布模拟[J]. 南京航空航天大学学报202355(1): 146-153.
  LI S, SHU J, ZHANG Z Q, et al. Study on simulation for droplet mass distribution of supercooled large droplet cloud in icing wind tunnel[J]. Journal of Nanjing University of Aeronautics & Astronautics202355(1): 146-153 (in Chinese).
22 陈舒越, 郭向东, 王梓旭, 等. 结冰风洞过冷大水滴粒径测量初步研究[J]. 实验流体力学202135(3): 22-29.
  CHEN S Y, GUO X D, WANG Z X, et al. Preliminary research on size measurement of supercooled large droplet in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics202135(3): 22-29 (in Chinese).
23 WONG S C, PAPADAKIS M, TAN S. Computational and experimental investigation of a spray rig for airborne icing tankers[C]∥Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
24 李浩, 程嘉辉, 孙春亚, 等. 基于CFD-DPM的大规模颗粒-流体系统数值仿真与分析[J]. 机械工程学报202258(22): 450-461.
  LI H, CHENG J H, SUN C Y, et al. Numerical simulation and analysis of large-scale particle fluid system based on CFD-DPM method[J]. Journal of Mechanical Engineering202258(22): 450-461 (in Chinese).
25 GOSMAN A D, LOANNIDES E. Aspects of computer simulation of liquid-fueled combustors[J]. Journal of Energy19837(6): 482-490.
26 BARDINA J, HUANG P, COAKLEY T, et al. Turbulence modeling validation[C]∥Proceedings of the 28th Fluid Dynamics Conference. Reston: AIAA, 1997.
27 KUMAR R, GOPIREDDY S R, JANA A K, et al. Study of the discharge behavior of Rosin-Rammler particle-size distributions from hopper by discrete element method: a systematic analysis of mass flow rate, segregation and velocity profiles[J]. Powder Technology2020360: 818-834.
28 ROSENBLATT M. Remarks on some nonparametric estimates of a density function[J]. The Annals of Mathematical Statistics195627(3): 832-837.
29 PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics196233(3): 1065-1076.
30 SILVERMAN B W. Density estimation for statistics and data analysis[M]. Boca Raton: CRC Press, 1986: 7-15.
31 EPANECHNIKOV V A. Non-parametric estimation of a multivariate probability density[J]. Theory of Probability & Its Applications196914(1): 153-158.
32 WAND M P, JONES M C. Kernel smoothing[M]. Boca Raton: CRC Press, 1994: 90-116.
文章导航

/